Chemistry Unit 5 Primary reference: *CHEMISTRY*, Addison-Wesley

Торіс	Essential Knowledge	Study Support
Scientific	Practice safe use of chemicals and equipment	
Investigation	Recall that percent error = [experimental – theoretical (true)] x 100	
15	theoretical (true)	
SUL IF		
Atomic	Going down a group on the Periodic Table, each element has one more principal energy	Ch 14 : Read pp. 398-
Structure and	level filled with electrons than the element above it, so the outer electrons are farther away	406.
Poriodic	from the nucleus. Thus, the size of the atoms increases going down a group. Therefore the	
Periodic	atomic radius increases going down a group.	
Relationships	Going from left to right across a period of the Periodic Table the valence electrons are all in	
	the same principal energy level but the number of protons in the nucleus increases. Thus	
2.5	the same principal energy level, but the number of process in the nucleus increases. Thus,	
	the nucleus is more positively charged and attracts the electrons more strongly. Therefore,	
	the atomic radius decreases going from left to right across a period.	
SOL	The shielding effect is constant across a given period and increases within a given group	
2d,e,f,g,h,i	from top to bottom.	
	Cations are smaller than their parent atom, anions are larger.	
	Ionization energy is the energy needed to remove a valence electron from an atom.	
	Toning the provide state of th	
	ionization energy increases going from left to right across a period of the periodic	
	table because the atomic radius decreases, which means that the valence electrons are held	
	more tightly by the nucleus.	
	Ionization energy decreases going down a group because the valence electrons are	
	further away from and more loosely held by the nucleus	
	Flectronegativity is the ability of an atom in a bond to attract electrons	
	The electronegativity is the ability of all action in a bold to durate electrones.	
	The electronegativity increases across a period of the periodic table (because the	
	atomic radius decreases, which means that the valence electrons are held more tightly by	
	the nucleus). The noble gases have virtually no electronegativity as the valence shell is full.	
	The electronegativity decreases down a group (because the valence electrons are	
	further away from and more loosely held by the nucleus).	
Nomenclature.	Elements with low ionization energies or high electronegativities have high reactivities.	Ch 16 Read pp. 437-
Formulas and	Alkali metals lose electrons easily to become cations, whereas balogens easily gain	442 on covalent
Formulas, and	alectrons to become anions	443 On covalent
Reactions	elections to become amons.	bonding. Read pp.
		455-457 on VSEPR
3.5	Bonds form between atoms to achieve stability (meeting the octet rule). In covalent	theory.
515	bonds , atoms share electrons. In ionic bonds , atoms transfer electrons.	cheory:
SOL 3c, 3d	A covalent molecule can be represented by Lewis structures where each bonding pair of	
	electrons is represented by a pair of dots or single line. Covalent bonds may be single,	
	double or triple. Valence Shell Electron Pair Repulsion (VSEPR) Theory is used to predict	
	the shape of a molecule around a central atom. The shapes include: linear, trigonal	
	nianar tetrahedral nyramidal and hent	
	planar, ceranearai, pyrannaal, and bene.	
Moler	Theoretical Viold is the amount of reaction product calculated using staichismeters	Ch 0: Dead an 256 250
Molar	Theoretical Field is the amount of reaction product calculated using stoichiometry.	Ch 9 : Read pp 256-258
Relationships	Actual field is the amount of product recovered (usually some is lost). Percent yield is	on percent yield
4.5	the ratio of actual yield to theoretical yield, multiplied by 100.	
	The equation is % yield = <u>experimental yield</u> x 100	
501 <i>4</i> h	theoretical (true) yield	
50L 40		
Phases of	The following mathematical relationship between the pressure, volume and	Ch 12: Review pages
Matter and	temperature of a gas is used to describe the behavior of gases.	330-332 on pressure
Vinctic	$\mathbf{D} \mathbf{V} = \mathbf{D} \mathbf{V}$	volume and
	$\underline{\mathbf{r}_{1}}\underline{\mathbf{v}_{1}} = \underline{\mathbf{r}_{2}}\underline{\mathbf{v}_{2}}$	
Molecular	$T_1 T_2$	temperature. Read pp.
Theory	An Ideal Gas does not exist, but this concept is used to model gas behavior. A	339-340 on the
55	Real Gas exists has intermolecular forces and particle volume, and can change	combined das law
5.5	incar ous chois, has inconnoicealar forces and particle volume, and can change	Dood pp 241 245
		Reau pp. 541-545 00
SOL 5b	PV = nRT.	the ideal gas law.
	R is the ideal gas law constant and has two values depending on the pressure	
	lunits	
	They are $\mathbf{P} = \mathbf{Q} 214 \mathbf{I} \mathbf{k} \mathbf{P} \mathbf{a} / \mathbf{mol} \mathbf{k}$ and $\mathbf{P} = 0.0021 \mathbf{I} \mathbf{a} \mathbf{t} \mathbf{m} / \mathbf{mol} \mathbf{k}$	

Unit 5 Objectives

Chemistry, Addison-Wesley, 2002

- I) Gas Laws
 - A) Combined Gas Law
 - B) Ideal Gas Law
- II) Chemical Periodicity
 - A) Development of the Periodic Table (read pages 390-396)
 - B) The Modern Periodic Table/Periodic Law (p 124 and 390-396)
 - C) Electron Configurations in The Periodic Table (already covered) (p 390-396)
 - D) Periodic Trends
 - 1) Trends in Shielding Electrons and Effective Nuclear Charge (p 400-401)
 - 2) Trends in Atomic Size (p 398-401)
 - 3) Trends in Ionization Energy (p401-403)
 - 4) Trends in Electronegativity (p405-406)
 - 5) Trends in Ionic Size(p403-404)
 - E) Predicting Element Reactivity from Electronegativities and Ionization Energies.
- III) Stoichiometry: Percent Yield (Read pages 256-258)
- IV) Covalent Bonding:
 - A) Single Covalent Bonds
 - B) Double and Triple Covalent Bonds
 - C) Drawing lewis dot or line structures for Covalent Compounds
 - 1) Molecules
 - 2) Polyatomic Ions
 - D) VSEPR Theory (3-dimensional molecular structures)

Objectives and (SOLs)

- 1) (5b) Solve gas law problems using the Combined Gas Law and the Ideal Gas Law.
- 2) (5b) Explain the difference between a real gas and an ideal gas.
- 3) (5b) Predict when a gas will behave most ideally.
- 4) (2i) Describe the contributions of Mendeleev and Moseley to developing the periodic table.
- 5) (2f) Define atomic radius, ionization energy, electronegativity and shielding effect
- 6) 2f) Explain how and why atomic radius, ionization energy and electronegativity show periodic trends in terms of shielding electrons, principle energy levels, and nucleus charge
 - a) identify how atomic radius changes across a period and down a family.
 - b) identify how first ionization energies change across a period and down a family
 - c) identify how electronegativity changes across a period and down a family.
 - d) predict the size of an ion versus its parent element.
 - e) explain the periodic trends (atomic radius, first ionization energy, elecronegativity) in terms of shielding electrons and effective nuclear charge.
- 7) (4b) Calculate the theoretical yield, actual yield and percent yield of a chemical reaction.
- 8) (3d) Compare ionic bonding to covalent bonding
- 9) (3c) Draw Lewis dot or line structures of molecular compounds and polyatomic ions.
- 10) ((3d) Predict the geometry of simple molecules with one central atom.

Gas Law Review

A) Boyle's Law (Volume-Pressure Change)

Math Equation: $P_1V_1 = P_2V_2$ Direct or Inverse Relationship? Which of the 3 variables is constant?

B) Charles's Law for Temperature-Volume Change

Math Equation:
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Direct or Inverse Relationship?
Which of the 3 variables is constant?

C) Gay-Lussac's Law (Pressure-Temperature Interaction)

Math Equation:
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Direct or Inverse Relationship? Which of the 3 variables is constant?

The Combined Gas Law

1) All these laws can be combined into the Combined Gas Law and used to solve problems where two variables change simultaneously. You can always use this one! Just remove the one that's constant and you will instantly get one of the 3 original ones.

2) Math Equation:
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

Example 1: A balloon contains 15 liters of Helium in Williamsburg at 99.2 kPa and 25°C. What will be the volume of the balloon on Mount Everest at 34 kPa and -32°C?

Example 2: A 550. mL sample of gas at 25°C occupies 1200 mL at 45°C and 200. kPa. What was the sample's original pressure?

Example 3: A weather balloon has a volume of 42 liters at 1.0 atmospheres and 20°C. As the balloon rises to 15,000 meters, the atmospheric pressure drops to 0.25 atmospheres and the balloon's volume increases to 143 liters. What is the temperature at 15,000 meters?

Example 4: A gas is compressed from 6.82 atm to 70% of the starting pressure, and the temperature is tripled from 150°C. What is the final volume if the initial volume was 333 L?

<u>Advanced</u> Example: A spherical weather balloon (diameter of 1.20 m) starts on the ground at 32° C (which is nearly 90°F). The pressure on the ground is 14.7 psi. The balloon is released into the air; at an unknown height *x* meters above the ground, the diameter of the balloon expands to 1.50 m, and the temperature drops to 12°C. What is the internal pressure of the balloon in kPa at height *x*?

In general, what happens to atmospheric pressure with an increase in altitude?

In general, what happens to atmospheric temperature in the troposphere with an increase in altitude?

The Ideal Gas Law (Putting it all together)

- 1) Ideal Gas Law accounts for the **amount (moles)** of gas.
- 2) Math Equation: PV = nRT

P=	T=
V=	R= 8.31 kPa•L/mol•K
n=	or 0.0821 atm•L/mol•K

3) Caution: Use the correct units (kPa, Liters, moles, K, and R units)

Example 1: How many moles of helium will be required to fill a balloon to 16 liters in Denver on a nice summer day(83 kPa, 30.°C)?

PV = nRT where R= 8.31 kPa•L/mol•K or 0.0821 atm•L/mol•K

Example 2: A 25 liter gas cylinder is filled with 139 moles of oxygen at 23 °C. What will be the pressure inside the cylinder in atmospheres?

Example 3: 13 grams of NO_2 is placed in a 2.0 liter tank at 302 Kelvin. What is the pressure inside the tank in atmospheres?

Example 4: How many grams of Xenon gas are needed to pressurize a 5.0 liter tank to 520 kPa at 55° C?

4) Issues with the Ideal Gas Law

Ideal Gas Behavior	Real Gas Behavior
Gas particles have negligible volume compared to container size	
Gas particles do not attract or repel each other	
Therefore:	Therefore:

Chapter 14: The Periodic Table

I. Historical Development of the Periodic Table.

- A. 1869: Mendeleev arranges the 63 known elements by increasing atomic number so that regular periodic (repeating) trends appear. He leaves blanks for three missing elements (Ga, Sc, Ge). Note, the noble gases were not isolated until the 1890's.
- B. 1913 Moseley determines the nuclear charge, number of protons, in the elements and reorders the periodic table by atomic number.

II. Organization of the Modern Periodic Table

A. Columns are called ______ or _____

Groups show common physical properties and chemical reactivity.

B. Rows are called _____.

The period number matches the ______ of the valence electrons.

Bohr Models

Hydrogen

Aluminum

Lithium

III. Valence electrons determine the chemical properties of compounds.

Valence electrons:
A. Noble gases (Group) electron configurations
He:
Ne:
Ar:
What are shielding electrons?
In the noble gases, the valence electron shell or outer principle energy level is
B Representative elements (Groups
D. Representative elements (Groups,,,,,,, _
В.
S:
K:
1. Element's group or family number identifies the number of electrons.
2. Elements row or identifies the .
C. Element Properties due to valence electrons, nuclear charge, and shielding electrons:
1. Atomic Radius
2. Ionization Energy
· · · · · · · · · · · · · · · · · · ·
5. Lieuloneyallvily

Chapter 14: Periodic Trends Notes

Periodic Law: When elements are arranged in increasing order of atomic number there are trends or patterns in their chemical and physical properties.

Shielding Electrons

• As you move down a group, the number of shielding electrons increases. As you move across a row, the number of shielding electrons stays the same.

Ne:

Na:

Li:

Effective Nuclear Charge:

- As you move down a group, the effective nuclear charge decreases because the valence electrons are in higher principal energy levels. (Shielded by more electrons and farther away from nucleus.)
- As you move across a period, the effective nuclear charge increases as the nucleus adds protons (attractive pull for electrons), but the new electrons are added to the same principal energy level. The number of shielding electrons stays constant.

Atomic Radius

- Group Trend—The atomic radius increases down a family because the valence electrons are in higher principle energy levels and thus farther from the nucleus.
- Periodic trend The atomic radius decreases across a period because protons are added to the nucleus while the number of shielding electrons stays the same. The greater effective nuclear charge pulls the valence electrons closer to the nucleus.

Let's compare Li, Ne and Na by drawing Bohr models.

Na:

First Ionization Energy: Energy to remove the first valence electron from a neutral atom.

- **Group Trend**: Decreases down a group as valence electrons are in higher principle energy levels and farther from the nucleus. (It takes less energy to remove the valence electron).
- **Periodic Trend**: Increases across a period because the valence electrons are closer to the nucleus.

Electronegativity: The tendency of an atom to attract electrons to itself in a

chemical bond (tendency to become an anion)

F:

- **Group Trend:** Electronegativity decreases down a group/family because the valence shell is farther from the nucleus so valence electrons feel less electrostatic attraction.
- **Periodic Trend**: Electronegativity increases across a period toward the halogens because the valence shell is closer to the nucleus as you move across a period. BUT, noble gases have a full shell, so new electrons must enter a higher principle energy level.

Let's compare Li, Na, F and Ne.

Ne:

Na:

The Electronegativity Rap

E-lec-tro-neg-a-tiv-i-ty It's where electrons wan-na be Going up a group is heaven They don't like period seven The halogens are really hot Electrons join them like a shot Noble gases have a full shell Electrons aren't wanted, oh well

Summary of periodic trends

To the tune of "Brother John"

Francium's big, Francium's big Neon's small, Neon's small Fluorine loves electrons Flourine loves electrons Francium don't Francium don't

Ionic Size

Cations are always ______ than the original atom.

Why: The effective nuclear charge on the reduced number of electrons is greater. The number of principle energy levels decreases.

Example Mg vs Mg²⁺ (136 picometers vs 86 picometer radius)

Anions are always ______ than the original atom. Why: The effective nuclear charge on the increased number of electrons is reduced. Example: F vs F⁻ (64 picometers vs 119 picometer radius)

Periodic Trends and Element Reactivity

Reactivity:_____

The halogens are very reactive due to high electronegativity. So the most reactive

halogen is ______. The alkali metals are very reactive due to low ionization energy.

The most reactive alkali metal is ______.

PERIODIC TRENDS

The term *periodic* means *repeating*. The periodic table has trends that repeat across periods (rows).

Lithium is an alkali metal in **period 2**, and its chemical reactivity is similar to **sodium**, an alkali metal in **period 3**. What is the name of the alkali metal in period 4?

Helium, neon, argon, krypton, xenon... how are they all similar?

They're all nobel (inert or non-reactive) gases, and they're all in the group, but different periods.

There are 3 main periodic trends to know:

- _____: How *big* is the atom?
- _____: How much does the atom *want or hog electrons* when it's

in a compound?

- You know how sodium has that 1 valence electron that it doesn't really want?
 Sodium isn't very electronegative. It really doesn't want to add electrons.
- o ...and chlorine has 7 valence electrons, but it reallillilly wants 8 so it looks like argon?
 - Chlorine is pretty electronegative. It likes to hog electrons.

_____: How much energy does it take to steal an electron from

the valence (outer) shell of the atom in the gaseous state?

- Do you think it's easy to steal sodium's valence electron?
 - YES! It doesn't want it anyway. Sodium's first ionization energy is pretty low.
 - $Na(g) \rightarrow Na^+(g) + e^-$... Easy. Doesn't take a lot of energy.

• Do you think it's easy to a valence electron from chlorine?

• NO! It wants to add, so taking it away is hard.

Atomic Radius Trend of Neutral Compounds

(Within periods, and within groups)

HUGE tip: ______ is the largest atom. Atomic size for neutral atoms increases going ______ a group, and ______ going right toward the noble gases.

Electronegativity Trend

HUGE tip: ______ is the most electronegative element. Electronegativity (represented by unitless numbers) is increases upward and to the right, toward _____.

Ionization Energy Trend & Electron Affinity Trend

Ionization Energy: This is the amount of energy (in joules or kilojoules) it *REQUIRES* to <u>remove</u> an electron from an atom.

Electron Affinity: This is the amount of energy that is *RELEASED* when an electron is <u>added</u> to an atom.

HUGE tip: The ______ an atom is, the ______ it is to remove an electron. (Think of the mom with kids in Walmart example.) So, a larger atom has a lower ______ energy.

Chapter Nine Part 2: Percent Yield in Stoichiometry Problems

Percent Yield =

Example 1:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

What is the percent yield of product if 2.0 moles of N_2 reacts with excess hydrogen to produce 3.6 moles of ammonia, NH_3 ?

Step 1: Calculate Theoretical Yield (Do Stoichiometry)

Step 2: Calculate Percent Yield

Example 2:

$$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$$

8.2 moles of ethane, C_2H_6 , reacts with excess oxygen to produce 22 moles of water. What was the percent yield of water?

Example 3:

$$2AI(s) + 3Br_2(I) \rightarrow 2AIBr_3(s)$$

6.00 grams of aluminum reacted with excess bromine to yield 50.3 g of Aluminum Bromide. Calculate the percent yield for this experiment.

Example 4:

$$2Fe_2O_3 + 3C(s) \rightarrow 3CO_2 + 4Fe$$

250 grams of Iron(III) oxide reacts with excess carbon to form 140 grams of pure iron. What is the percent yield of iron?

Chapter 16: Covalent Bonding

Introduction

- I) Why do atoms bond?
 - A) The new compound has lower energy than lone atoms
 - B) atoms take on noble gas configuration (octet rule)
- II) Two Types of Compounds/Bonds
 - A) Ionic bonding
 - 1) Composed of a metal ______ + a nonmetal _____
 - 2) Cation gives up valence electrons to anion
 - 3) Results in charge difference causing attraction and bonding
 - 4) Example: NaCl

I) Covalent Bonding (found in molecules)

- A) Composed of two or more _____
- B) Atoms ______ electrons to fulfill the octet rule

C) Examples of sharing one pair of electrons:

 H_2

F₂:

 H_2O

1) Draw the following compounds with single covalent bonds: HF, CIF, H₂S, NH₃, CH₄. Circle the lone pairs.

Lone pair:		
• •		

D) Example of sharing two pairs of electrons _____

 O_2

E) Example of sharing three pairs of electrons _____

F) Drawing Lewis Structures (a.k.a. Structural Formulas) of molecular compounds.

Replace pairs of bonding electrons with dashes

Symbol	Represents
	represents a lone pair, or an unshared pair of electrons
	represents a single bond, or one shared pair of electrons
	represents a double bond, or two shared pairs of electrons
	represents a triple bond, or three shared pairs of electrons

Examples: HF, O_2 , N_2 , $\mathbf{N}H_3$

Chapter 16: Drawing Lewis Structures of Molecular Compounds and Polyatomics

4 of 4

- 1. Count the valence electrons. For a polyatomic anion, add one electron for each negative charge.
- 2. Connect the atoms by single bonds around a central atom. Remember, each single bond uses two electrons.
- 3. Fill the outside atoms with electrons to meet the octet rule. Remember, H can only have two electrons.
- 4. Use any remaining electrons to fill the octet on the central atom.
- 5. If the central atom does not have a full octet, share lone pairs from the outside atoms to form double or triple bonds.

Note: If you have an odd number of valence electrons to start with, you will never get octets around all the atoms!

Examples: Indicate the number of lone pairs for each compound $H_2 \mathbf{O}$

 $\mathbf{C}O_2$

 \mathbf{SO}_3

 $\mathbf{C}Cl_4$

Chapter 16: VSEPR Theory

Valence Shell Electron Pair Repulsion Theory

Facts:

- Structural Formulas are 2-D, but molecules are 3-D structures
- Lone electron pairs repel each other and bonded pairs
- Electron pairs in different bonds repel each other

VSEPR Theory: _____

Note: a double or triple bond counts as one electron "region"

Electron Region Geometry	Examples:	Molecular Geometry (atoms only)
Linear	CO ₂	Molecular Geometry:
angle =		
Trigonal Planar	SO ₃	Molecular Geometry:
• • •		
angle:		
		Angle:
	O ₃	Molecular Geometry:
		Angle:

Determining Electron Region Geometries and Molecular Geometries

Why is the O-O-O angle 117° and not 120°?

Effect of Lone Pairs on Geometry: _____

Tetrahedral angle:	CH4	Molecular Geometry:
		Angle:
	NH3	Molecular Geometry:
		Angle:
	H ₂ O	Molecular Geometry:
		Angle:

- How to figure out molecular geometry:1. Draw Lewis structure2. Determine the Electron Region Geometry3. Determine the Molecular Geometry

Practice:

	SCl ₂
N H ₄ ⁺	P O ₃ ³⁻

Examples: Draw the structure including lone pairs, then figure out the shape

	0
	O_3
SiOa	NO_2^-
NO ₂ ⁻	PO. ³⁻
	104
SO_3^{2-}	CH ₂ Br ₂
°	
N ₂ O	COCl ₂