Chemistry Unit 4

	J		
Primary reference:	Chemistry: Matter and	Change [Glencoe, 201	7]

Торіс	Essential Knowledge	Study Support
Scientific	Use chemicals and equipment safely.	
Investigation	Accuracy is how close a measurement is to the true value. An accurate	
1.4	measurement has very little error.	
SOL 1a,b,f	Percent Error = 100 x accepted value-exper. value / accepted value	
Atomic	Niels Bohr proposed the planetary model of the atom with electrons located	Ch 5:
Structure and	in distinct energy levels (orbits) around the nucleus. Louis de Broglie proposed	Read pp. 136-145 on the
Periodic	that all particles have wavelengths. (including electrons). Max Planck proved	electromagnetic spectrum;
Relationships	that a photon's wavelength is proportional to its energy. Schrodinger calculated	light, energy, and waves.
	the theoretical shapes of electron orbitals (s,p,d,f). Heisenberg developed the	
2.3	uncertainty principle concerning an electron's location and velocity.	Read pp. 144-148 on atomic
	Electrons are added one at a time to the lowest energy levels first (Aufbau	emission spectra and
SOL 2d, 2g, 2i	Principle). An orbital holds a maximum of two electrons (Pauli Exclusion	electron energy levels.
	Principle). Electrons occupy equal-energy orbitals so that a maximum number	
	of unpaired electrons results (Hund's Rule). Energy levels are designated 1–7.	Read pp. 146-155 on
	Orbitals are designated s, p, d, and f according to their shapes (sphere,	development of the modern
	dumbbell, 4-leaf clover.) The s, p, d, f orbitals relate to regions of the Periodic	quantum mechanical model.
	Table. Valence electrons occupy the highest principle energy level of an	
	atom. All the elements in a group have the same number of valence electrons.	Read p 154 on orbital
	An element's electron configuration determines the number of valence electrons.	snapes.
	example: bromine's valence electron configuration is 4s ² 4p ³ with / valence	Road pp 1E6 162 on
	elections. The outermost electrons in an atom are called valence electrons. The pariod (row) number on the pariodic table corresponds to the outermost operation	clostron configurations
	level occupied by the valence electrons in an element. Elements in the same	the aufbau principle
	group (column) on the periodic table have the same number of valence electrons	
	Lewis dot diagrams show the valence electrons of an atom. The electrons	Read pp 161-162 on Lewis
	(dots) are arranged around the element's symbol.	dot diagrams and valence
	Metallic bonds consist of the attraction of free-floating valence electrons for	electrons
	the positively charged metal ions.	
		Ch 7: Read pp. 225-227 on
		metallic bonds
Nomenclature,	Bonds form between atoms to achieve stability. Ionic compounds are formed by	Ch 7: Review/Read
Formulas, and	the attraction between positive and negative ions. Ions are formed by electron	sections 7.1-7.3 (pp. 206-
Reactions	transfer from a metal to a non-metal (ionization). After electron transfer, both	224) about ion formation,
3.3	the configuration of a poble gas	noming and writing formulas
	the configuration of a hobie gas.	for ionic compounds
SUL 3a, 3d, 3e		
Molar	Dissolving is a physical change that involves heat. When an lonic compound	Ch 9: Read pp 299-300
Relationships	dissolves in water it breaks into the ions that make it up. This process is called	(ions and dissociation)
4.4	Example: NaCl(s) \rightarrow Na ⁺ (an) $+$ Cl ⁻ (an)	(electrolytes in solution)
	lonic compounds that dissociate completely in water are strong electrolytes	
SOL 40	Specific Heat Canacity (C) is a physical property of a substance	Ch 15:
Matter and	Specific freat capacity (c) is a physical property of a substance. $n - m.C.\Lambda T$	Read and review pp 516-
Kinetic	is used to calculate heat mass specific heat or temperature change	518 on heat energy.
Molecular	respectively. Specific heat can be used to identify a substance. The equation is	
Theory	sometimes seen as $\mathbf{q} = \mathbf{C} \cdot \mathbf{m} \cdot \Delta \mathbf{T}$; it means the exact same thing.	Read pp. 519-522 specific
5.3		heat (capacity).
SOL 5d,5e,5f	Atoms and molecules are in constant motion and they have more kinetic	_
	energy ("energy of motion") when they're hotter (gas) versus cooler (liquid,	Review pp. 525-528 on
	then solid). Forces of attraction between molecules determine the physical	thermochemistry before
	changes of state. The intermolecular forces must be overcome in order for a	reading pp. 529-533 00
	substance to melt or boll. Phase changes that require heat (like melting or bolling) are and thermic AH is positive for an and thermic change. This	changes
	means heat does in Molar heats of fusion and vanorization can be used to	changes.
	calculate energy changes	
	Phase changes that give off heat (like freezing and condensing) are exothermic .	
	ΔH is negative. This means heat is released. Molar heats of solidification and	
	condensation can be used to calculate energy changes.	
	Heating and cooling curves, known as temperature line graphs, show the	
	energy changes that occur as a substance does from a solid to a das as	
	temperature is changed.	

Objectives for Unit 4

Chemistry: Matter and Change [Glencoe, 2017]

Topic Outline

- I) Thermochemistry Part 1
 - A) Types of Energy
 - B) Exothermic and Endothermic processes
 - C) Heat Capacity and Specific Heat
 - 1) Calculations using specific heat capacities
 - 2) Calorimetry
 - D) Changes of State and Heat Changes
 - 1) Phase Changes and Interpreting Heating Curves
 - 2) Molar Heats of Fusion and Solidification
 - 3) Molar Heats of Vaporization and Condensation
- II) Electrons in Atoms
 - A) Review Rutherford's Model
 - B) Bohr's Model
 - C) Quantum mechanical model (Schrodinger & Heisenburg)
 - D) Atomic electron orbitals (s,p,d & f) and electron configurations
 - E) Identifying valence electrons
- III) Ionic Bonding
 - A) Valence Electrons
 - B) Octet Rule
 - C) Ionic Bonding
 - D) Properties of Ionic Compounds
 - E) Properties of Metallic Bonds and Metals

(SOL) Learning Objectives

- 1. (4e) Identify a process as endothermic or exothermic based on whether it absorbs or releases heat.
- 2. (5f) Memorize and use $q=mC\Delta T$ to solve specific heat capacity and calorimetry problems.
- 3. (5e) Calculate energy changes during phase changes using molar heat of fusion, molar heat of vaporization,
- 4. (5d) Identify freezing point, ΔH_{fusion} , $\Delta H_{\text{vaporization}}$, and boiling point on a heating curve of water.
- 5. (2f) Determine the # of valence electrons and electron configurations for anions and cations
- 6. (3d) Explain why ionic bonds form in terms of electron transfer and the octet rule
- 7. (3d) Explain why Hydrogen, Lithium, and Beryllium break the octet rule in ionic compounds
- 8. (3d) Predict which compounds will be ionic based on their position on the periodic table.
- 9. (2h) Define an electrolyte, and understand strong versus weak electrolytes.
- 10. (2h) Predict which compounds will be electrolytes
- 11. (2h) Illustrate what happens when an ionic compound dissolves in water.
- 12. (2h) Explain why metals conduct electricity
- 13. Identify the contributions of Bohr, de Broglie, Planck, Heisenberg and Shrodinger to the development of the modern atomic model.
- 14. Use the Pauli Exclusion Principle, the Aufbau Principle, and Hund's Rule to determine electron configurations.
- 15. Identify the shapes of the s, p and d orbitals and the number of electrons in each.
- 16. Provide the spdf orbital electron configuration of elements using the periodic table.

I.ENERGY CHANGES A. Definitions Energy:
Potential Energy:
Kinetic Energy:
Heat:
Thermochemistry:
B. Exothermic and Endothermic Processes
Processes that absorb () heat or release () heat. Definitions
Consider $NH_4Cl(s) \xrightarrow{water} NH_4^+(aq) + Cl^-(aq)$
Enthalpy:
System:
Surroundings:
ΔΗ:
Endothermic Process:
Exothermic Process:

Another example of Endothermic and Exothermic processes ice melting in glass of water:

. HEAT CAPACITY AND SPE	ECIFIC HEAT CAPACITY	
Definitions		
Joule (J):	one	kJ =
calorie:		
calories	s = 1 Calorie (food labels) = 1 kilocalorie (kc	al)
also, 1 calorie	= 4.184 J	,
also, 1 calorie Im A Snickers bar with 250 " <u>C</u> alori	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and	,
also, 1 calorie Im A Snickers bar with 250 " <u>C</u> alori Specific Heat Capacity:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and	,
also, 1 calorie Im A Snickers bar with 250 " <u>C</u> alori Specific Heat Capacity:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and	,
also, 1 calorie also, 1 calorie im A Snickers bar with 250 " <u>C</u> alori Specific Heat Capacity:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and	,
A Snickers bar with 250 " <u>C</u> alorie Specific Heat Capacity:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and Units:	,
A Snickers bar with 250 " <u>C</u> alorie Specific Heat Capacity:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and Units:	,
also, 1 calorie 1m A Snickers bar with 250 " <u>C</u> alori Specific Heat Capacity: Symbol:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and Units:	
A Snickers bar with 250 " <u>C</u> alori Specific Heat Capacity: Symbol:	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and Units:	,
	= 4.184 J ies" (kilocalories) in food has 250,000 <u>c</u> alories and Units:	,

$q = m C \Delta T$

The equation has four variables: "q" is heat in Joules; "m" is mass in grams; "C" is specific heat capacity in J/(g•°C); " Δ T" is change in temperature in °C (the change in temperature is the final temperature minus the initial temperature, or Δ T = T_f – T_i). This equation is only valid if the substance does not change phases. Identify the variables, then solve for the missing variable.

Sample Problems

- 1. A 500 g sample of iron changes from 22.0°C to 35.0°C. The specific heat of iron is known to be 0.46 J/(g•°C). How much heat was added?
- A 500. g sample of water changes from 22.0° to 35.0°C. The specific heat of water is known to be 4.18 J/(g●C) How much heat was added?

3. When 82 J of heat is added to a sample of aluminum, its temperature increased by 15.3°C. Given that the specific heat capacity of aluminum is 0.90 J/(g•°C), what is the mass of the sample?

4. It takes 78.2 J to raise the temperature of 45.6 g lead by 13.3°C. Calculate the specific heat capacity of lead.

A 142 g sample of silver at a temperature of 19.6°C absorbs 61.30 J of heat. What is the final temperature of the sample? [C_{Ag} = 0.24 J/(g•°C)]

C. Calorimetry

Calorimetry:_____

II. Heat Changes Required for Changes of State (Phase)

A. Phase Changes

Solid

liquid

gas

Heat is absorbed or released when matter changes state.

Interpreting Heat Curve for water

Does water increase in temperature during phase changes?

B. Molar Heats of Phase Changes

Molar heat of fusion: _____ Molar Heat of Solidification: $\Delta H_{\text{fusion}} = - \Delta H_{\text{solidification}}$ Molar heat of vaporization_____ Molar Heat of condensation: $\Delta H_{vap.} = - \Delta H_{cond.}$ Molar Heats apply to phase changes. The units may include: J/gram J/mol calories/gram kJ/mol But they're ALWAYS ______ over _____. Solve the problems as unit/dimensional analysis problems. C. Using Molar Heats in Calculations.

Example 1: How many grams of ice would be melted by adding 2.25 kJ of heat to an ice cube at 0°C? $\Delta H_{fusion} = 6.0 \text{ kJ/mol}$

Example 2: How many kilojoules of heat would be released when 36.04 grams of steam condenses to water at 100°C?

 $H_2O(g \rightarrow H_2O(I) \text{ and } \Delta H_{cond.} = -40.7 \text{ kJ/mol}$

Molar Heat Calculations Practice

molar heat is given in J/mol or J/g or cal/g, so use it as a conversion factor

1. How much heat is required to melt 500.9 grams of ice at O°C? The heat of fusion of water is 80.0 cal/g.

2. How much heat is required to vaporize 13.1 grams of methane (CH₄) at it's boiling point, which has a heat of vaporization of 8.2 kJ/mol?

3. How many grams of neon must crystallize (solidify) at it's freezing point to release 560 J of heat, given that the neon's $\Delta H_{\text{fusion}} = 330 \text{ J/mol}$?

Interpreting a Cooling Curve for Water

Mixed Molar Heats and Specific Heat Capacity Problems

Use the heating curve to tell which is which

Specific heat capacity $H_2O(s) = 2.1 \text{ J/(g}^{\circ}C)$ Specific heat capacity $H_2O(l) = 4.2 \text{ J/(g}^{\circ}C)$ Heat of fusion $H_2O = 6.0 \text{ kJ/mol}$ Heat of vaporization $H_2O = 41 \text{ kJ/mol}$

1. How much energy is needed to raise the temperature of 150 grams of ice from -20.0°C to -5.0°C? (Ans = 4725 J)

2. How much energy is needed to vaporize 52 grams of water at 100°C? (Ans = $118 \approx 120 \text{ kJ}$).

3. How many grams of ice at 0°C would be melted by adding 820 kJ of heat. (Ans = 2500 g ice)

4. How much will the temperature of 850 grams of water increase if 16,000 Joules of heat is added? ($Ans = 4.5^{\circ}C$)

Review of Rutherford's Atomic Model(1911)

What	How	Model

A. Important Terms

- 1. atomic number: number of protons-whole number shown on the periodic table
- 2. mass number : number of protons plus neutrons
- 3. isotopes: elements with the same number of protons, but a different number of neutrons
- 4. atomic mass: weighted average of isotope masses. Listed on the periodic table.
- B. Symbols for Isotopes
 - 1. ¹³₆C _____ protons, _____ electrons, _____ neutrons
 - 2. ⁶⁴Cu protons, ____ electrons, ____ neutrons
 - 3. Pb-202 protons, ____ electrons, ____ neutrons
- C. Practice

ISOTOPE	ATOMIC #	# PROTONS # NEUTRON		MASS #
⁵⁴ Fe				
	36		40	
		13	14	

How many electrons, neutrons and protons in Zinc-67?

How many neutrons are in F-19?

An Aside About Light and Energy

Light is fast. It travels at	. (<i>distance</i> over <i>time</i> is
speed, which is the magnitude of velocity). "	_" is the constant that represents light's speed
in a	
Light frequency (, called "") × Light w	vavelength (, called "") = c
Max Planck (1900) determines	

Equations:

Energy of light, using frequency:	h = 6.626 × 10 ⁻³⁴ J·s v ("nu" not "v) = frequency (unit: $1/s \equiv s^{-1} \equiv Hz$)
Energy of light, using wavelength:	Small λ = high ν
	Larger λ = lower ν

Red	Orange	Yellow	Green	Blue	Indigo	Violet
Wavelength = 7.0 x 10 ⁻⁷ m Low Energy	L				4	wavelength x 10 ⁻⁷ m High Energy

Louis de Broglie (1924) determines _____

The de Broglie Equation	& Interpretation:

What did the spectrum tube demonstration show?

Bohr's Model of the Atom (Powerpoint)

What	How	Model

A Few Bohr Models (let's add the electrons)

The number of electrons in the outer principal energy level (or ______ shell) is the same within a group.

The number of principle energy levels is the same as the __

So why isn't this model good enough?

The Quantum Mechanical Model

A. Erwin Schrödinger used _______ to calculate where electrons **probably** are around the atom. His mathematical models were revolutionary to physics.

B. Werner Heisenberg adds the Heisenenberg Uncertainty Principle:

- a. How is the spin of an electron noted in models?
- E. Organization of Electrons

Description of Sublevels

- 1. "s" sublevels have 1 orbital it is ______ shaped
- 2. "p" sublevels have 3 orbitals they are ______ shaped
- 3. "d" sublevels have 5 orbitals 4 are ______ shaped, one "pacifier"
- 4. "f" sublevels have 7 orbitals they are ______ shaped

F. Filling in the Orbitals in Quantum Mechanics

1. Aufbau Principle:

Electrons fill the _____ first.

2. Pauli Exclusion Principle (PEP):

Only ______ electrons can be in each orbital (two per box or line!) and they must have ______ magnetic ______. (two different arrow directions!)

3. Hund's Rule:

When electrons occupy orbitals of ______, they fill in singly with aligned spins *before* they double up (space out if you can!) The bus seat analogy...

Electron Configurations & the Aufbau Diagram

Rules to fill it in:

- 1. Electrons enter lowest energy first. (start with "1s") [Aufbau Principle]
- 2. An orbital can have at most 2 electrons with opposite spins. [Pauli Exclusion Principle]
- 3. When electrons are filling orbitals of equal energy, one electron enters each before they start to spin pair (double up). [Hund's Rule]

N # electrons =

Ne # electrons =

#electrons =

As # electrons =

Complete the alternate form of the Aufbau diagrams below:

Chapter 13: Periodic Table and Electron Configuration

Representative elements: _____

Chapter 15: Ionic Bonds

I. Valence Electrons

A. definition: _____

B. Lewis Dot Structures: show ______ electrons as _____; the symbol

represents the core electrons (which is everything but the valence electrons).

Lewis Structures show bonded atoms as _____.

Lewis Dot Structure Example (single atom):

Lewis Structure of Molecule using Dots Only:

Lewis Structure of Molecule using Lines for Bonds:

Group	1	2	13	14	15	16	17	18
Example								

II. Octet Rule

- A. definition: _____
- B. A full valence shell is very _____ (which is happy! ©). Therefore, elements gain or lose electrons to reach a full octet.
 - configuration example: Na =

 $Na^+ =$

• configuration example: S =

S²⁻ =

C. *Exceptions* to Octet Rule in Ionic Compounds

Helium is happy with		valence electrons, so we call this exception the		
	rule. Atoms with	atomic numbers c	lose to He (such as,	, and
) will be	happy with 2 elec	ctrons. They can't	fit 8!	
H*: =	H ⁻ =	Li ⁺ =	Be ²⁺ =	
Terminology:	iso- means	Or	(think: isosceles triang	gle)
∴, what does	isoelectronic me	an?	л 	
<i>Concept Che</i> - Are He ar	eck: nd Ne isoelectron	ic with each other	?	
- Are O ²⁻ ar	nd Ne isoelectron	ic with each other	?	
- Are F ⁻ and	d Cl ⁻ isoelectronic	with each other?		
- Are Cl ⁻ an	d S ²⁻ isoelectroni	c with each other?	?	
- Which no	ble gas will iodine	e become isoelecti	ronic to when an iodine atom is	ionized?
- Na+ will lo	ose one electron,	- to become isoele	ctronic with	
- Which alk	aline metal is mo	st likely to ionize t	to become isoelectronic with the	noble
gas Krypt	on?			
- Are Mg ²⁺	and N ³⁻ isoelectro	onic?		

D. A couple of other octet rule **exceptions**:

Boron (B) actually prefers to have ______ valence electrons (and it's stable that

way!), rather than 8 like many others.

Atoms from sulfur and beyond can sometimes have more than 9. This is called

III. Ionic Bonding

A. Question: Where do anions get their extra electron(s) from anyway?

.

Examples: (NaCl, CaF₂, MgO, Li₃P, K₂S)

IV.	Pr	operties of Ionic Compo	unds
	lor	nic compounds are held t	ogether by
	Ele	ectrostatic attraction:	
	A.	crystal structure:	
	Na	CI	
	В.	electrolytes:	
	C.	high melting points	
V.	Me	etallic Bonds	
	A.	caused by attraction of	for the positively
		charged	
	В.	metals are good	because of these free floating electrons.
			e^{-} M^{+} $M^{+}e^{-}$ $M^{+}e^{-}$
			M ⁺ e ⁻ M ⁺ ^{e⁻} M ⁺

Ever notice how some metals, such as steel, bronze, and brass aren't on the periodic table???

These are called ______. An **alloy** is a solid mixture of metals.

Two (or more) metals are ______, then mixed together while they're

still ______. After the hot liquid metal mixture cools, you have an alloy.

Brass is made of	and	
It's great for musical instruments due to	how sound waves resonate (propagate)	
through the metal atoms!		Co. Contraction of the second se
Bronze is made of	, tin, and other metals.	
Steel is made of	, carbon, and other	

<u>Steel</u> is made of ______, carbon, and other elements.

Jewelry... what is "white gold" and "rose gold"? Jewelry is often an <u>alloy</u>. White gold is an alloy of gold and another metal, like nickel or platinum. ______ bonds keep it together, of course.

WHITE GOLD

YELLOW GOLD PLATINUM

Investigation Questions:

Why is it not a good idea to have jewelry that is pure gold?

What makes stainless steel special? And why doesn't it stain easily?

OYO Terms to Know:		
Malleable		
Conductor		
Ductile		
Brittle		

Writing Ionic Formulas from Names Review

- 1. Identify the charge of the cation (see periodic table)
- 2. Use empty parentheses if you don't know the metal's charge immediately
- 3. Identify the charge of the anion
- 4. Identify the charge of the metal by canceling the anion's charges
- 5. Put the charge of the metal in the empty parenthesis. This is the *oxidation state* of the metal.

Magnesium carbonate	Calcium nitrate
Sodium phosphate	Tin (IV) chloride
Strontium Nitride	Copper (III) Sulfate

Naming Ionic Compounds Review

- 1. Name the cation
- 2. Does the cation name need a parentheses
- 3. Name the anion
- 4. Figure out the cations charge if needed

Li ₂ O	
CaCl₂	
Fe(NO ₂) ₃	
Ba_3P_2	
V(OH)₅	
Cr ₂ O ₃	
Sr ₃ (PO ₄) ₂	
Cu(NO ₃) ₂	