Chemistry Unit 3

Primary reference: Chemistry: Matter and Change [Glencoe, 2017]

Topic	Essential Knowledge	Study Support
Scientific Investigation 1.3 SOL 1g, 1h	Use unit cancelation method for stoichiometry. Use graphing calculators and probeware to investigate gas behavior.	Ch 11: Read pp. 368-372 on stoichiometry and units cancellation Ch 2: Graphing and data representation: pp. 5558 (See also: math handbook section, pp. 956-965)
Nomenclature, Formulas, and Reactions 3.3 SOL 3a,3b,3c,3d,3e	Polyatomic ions are a group of atoms covalently bonded together that have a charge, and they travel "as a package" without splitting up. Use subscripts outside of parantheses to balance the charges of polyatomic ions when more than one is present in compound, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. Do not reduce subscripts of polyatomics. When two or more substances combine to form a single product, the reaction is called a synthesis reaction, also known as a combination reaction. In a decomposition reaction, a compound breaks down into two or more simpler substances. In a single replacement reaction one element takes the place of another in a compound. Ex) $\mathrm{A}+\mathrm{BC} \rightarrow \mathrm{AC}+\mathrm{B}$ In a double replacement reaction the positive portions of two ionic compounds are interchanged. Ex) AB +CD $\rightarrow A D+C B$ Combustion reactions occur when a substance is heated in the presence of oxygen. Many combustion reactions involve the heating of a hydrocarbon in the presence of oxygen to form carbon dioxide and water.	Ch 7: Read pp 221-222 on polyatomic ions. Know the following polyatomic ions: OH^{-}, $\mathrm{SO}_{4}^{-2}, \mathrm{NO}_{3}^{-}, \mathrm{PO}_{4}^{-3}, \mathrm{CO}_{3}^{-2}$ and $\mathrm{NH}_{4}{ }^{+}$ Ch 9: Read pp. 289-298 on reaction types.
Molar Relationships 4.3 SOL 4a,4b	Because matter cannot be created or destroyed, the total mass of the products is equal to the total mass of the reactants in a chemical reaction. Molar masses from the periodic table and mole ratios from the balanced equation can be used to calculate the mass of a reactant or product. (Mole-mole, massmass, particle-particle, gas volume-mole at STP) At STP (which is 1 atm of pressure, and $0^{\circ} \mathrm{C}$), 1 mole of any gas occupies a volume of 22.4 L . At non-standard temperature and pressure, the volume of a mole of gas will vary. An increase in temperature will cause an increase in volume (directly proportional) and an increase in pressure will cause a decrease in volume (inversely proportional).	Ch 11: Read sections 1 and 2 on stoichiometry, and practice. Ch 13: Read pp 452-453 on gas stoichiometry
Phases of Matter and Kinetic Molecular Theory 5.3 SOL 5a,5b	Pressure and temperature both affect the volume that a gas occupies. The pressure and volume of a sample of a gas at constant temperature are inversely proportional to each other (Boyle's Law). Boyle's Law Equation: $\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$ At constant pressure, the volume of a fixed amount of gas is directly proportional to its absolute temperature (Charles' Law). Charles' Law Equation: $\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$ At constant volume, the pressure of a fixed amount of gas is directly proportional to its pressure. Gay-Lussac's Equation: $\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{\mathbf{2}} / \mathrm{T}_{2}$	Ch 13: Read pp. 442-448 on gas pressure, temperature and pressure interactions

I. Ionic Compounds with Polyatomic Ions
A. Polyatomic Ions
B. Names \leftrightarrow Formulas Ternary Ionic Compounds
C. Mixed naming (molecular and ionic)
II. Calculating Percent Composition (Revisiting molar mass)
III. Identifying Reaction Types: single replacement, double replacement, synthesis, decomposition, or combustion
IV. Stoichiometry-Calculating Theoretical Yields
A. Mole-mole
B. Mole to particles
C. Mole to grams
D. Mole to gas volume at STP
E. Mixed stochiometry
V. Gases at non-STP Conditions
A. Kinetic Theory and Gas Particle Properties
B. Gas Pressure (units, atmospheric pressure, altitude, air pressure)
C. Kinetic Energy and Kelvin Temperature Scale
D. Variables describing gases (pressure, temperature, volume, quantity/moles)
E. Boyle's Law
F. Charles's Law
G. Gay-Lussac's Law

Objectives (SOL)

1. Review the following areas on the periodic table: alkali metals, alkaline earth metals, halogens, noble or inert gases, representative elements, transition metals, non-metals, metals, and metalloids.(2d)
2. Review using the roman numeral Stock System to identify and name transition metal ions.(3a)
3. Memorize the names, formulas and charges of the polyatomic ions $\mathrm{OH}^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}^{-}$, $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$and $\mathrm{NH}_{4}{ }^{+}$
4. Write the formulas for ionic and molecular compounds given their names and visa versa.(3a) for both ionic and molecular compounds.
5. Calculate the percent composition of a compound.(4a)
6. Classify a chemical reaction by the following five types: synthesis, decomposition, single replacement, double replacement, and combustion. (3e)
7. Calculate theoretical chemical quantities from balanced equations(4b)
8. Memorize the STP conditions for pressure in mmHg , torr, atm, and kPa . You will also be able to convert between them.
9. Explain the relationship between increasing kinetic energy and increasing temperature.
10. Discuss the three characteristics of ideal gases according to the kinetic theory
11. Use Boyle's law to calculate gas pressure-volume changes
12. Use Charles's law to calculate gas temperature-volume changes
13. Use Gay-Lussac's law to calculate pressure-temperature changes

POLYATOMIC IONS

Poly-means \qquad and -atomic means \qquad , so polyatomic ions are ions with >1 atom.

We've already learned about monatomic ions. (Mono- means \qquad).

Examples of monatomic ions: $\mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Br}^{-} \ldots$

Who ate what where? Mnemonic Device for 5 Common Polyatomic Anions

The first letter (or two letters, for "clam") is the first element.
The number of consonants ("Nick": $\boldsymbol{N}, \boldsymbol{c}$, and $\boldsymbol{k}=3$ consonants) is the number of oxygen atoms. The number of vowels ("Nick": $\boldsymbol{i}=1$ vowel) is the charge on the entire polyatomic ion.

Use the mnemonic to write the 5 polyatomic anions' chemical formulas and label them.

There are two more polyatomic ions you must know:

[IMPORTANT: Atom that form negative charges (anions) usually end in \qquad , and atoms that form positive charges can end in \qquad .]

Additional Information \& Tips:

Anions (negatively-charged ions) that end in "-ate" or "-ite" have oxygen atoms. Professionally, these are called \qquad (and that makes a lot of sense. Look at the name!)

Chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$ is an anion with the two elements \qquad \& \qquad .

Silicates $\left(\mathrm{SiO}_{\mathrm{x}}\right)$ are compound that is made of the elements \qquad \&
\qquad . The "x" means that the number of oxygens can vary.

The "normal" version of the 5 main polyatomic anions (nitrate, carbonate, chlorate, sulfate, phosphate), all end in \qquad . This is what you get from the normal Nick the Camel -

Weird Endings to Polyatomic lons: The \# of Oxygen Changes, BUT NEVER THE

If there is $\mathbf{1}$ extra oxygen atom, the root-or main element-of the name (nitr-, carbon-, sulf-, chlor-, phosph-) is surrounded by PER_ \qquad ATE

If there is the "normal" number of carbons, it's what you already know: \qquad ATE

How to Remember:
Hey... are you super great?
If you've got an extra oxygen, then you're "super great" so use "per-" and "-ate"!
...Are you just great?
If you've got all of your normal \# of oxygens, then you're just "great" so just use "-ate"!
Uh-oh... Now you have fewer oxygens than you normally have from Nick the Camel.
If there is $\mathbf{1}$ fewer oxygen, the root is now surrounded by ___ITE.
If there are $\mathbf{2}$ fewer oxygens, the root is now surrounded by HYPO \qquad ITE.

How to Remember:

Missing 1 oxygen? You're not great. You're just "-ite"
Missing 2 oxygens? You're less than "-ite." You're "hypo \qquad ite"
(Hypo- means less than, lower than, under, below, decreased, etc. Think: hypothermia, hypoglycemic)
Purely Polyatomic Practice: If you have the name, give the formula. If you have the formula, give the name.

1) $\mathrm{NO}_{3}{ }^{-}$ \qquad 6) Nitrite \qquad
2) Hyposulfite \qquad 7) Carbonate \qquad
3) NH_{4}^{+} \qquad 8) $\mathrm{PO}_{4}{ }^{3-}$ \qquad
4) $\mathrm{PO}_{3}{ }^{3-}$ \qquad 9) Chlorate \qquad
5) Hypochlorite \qquad 10) $\mathrm{SO}_{4}{ }^{2-}$ \qquad

REMEMBER: Polyatomic ions are like "packages" and "best friends forever," which means they travel together. The charge applies to the entire package. They do get into compounds with cations. NaNO_{3} is sodium nitrate. MgSO_{4} is magnesium sulfate. $\mathrm{Li}_{2} \mathrm{CO}_{3}$ is lithium carbonate. $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$ is calcium chlorate... there are 2 "packages" of chlorate. Get it? Always make sure your (-) and (+) charges are balanced in the neutral compound!

Practice Quiz: Together as a class.

- Write the chemical formula for strontium sulfite.
- What is ammonium? \qquad . It's positively charged, so it's a(n) \qquad meaning it comes FIRST when you name something, even though it's not a \qquad -.
Write the chemical formula for ammonium chloride. \qquad
- Write the chemical formula for sodium hydroxide. \qquad
- $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ is \qquad
- Vanadium (V) hydroxide is \qquad .
- Write the chemical formula for ammonium hydroxide. \qquad
- Write the chemical formula for rubidium oxide. \qquad . Why doesn't rubidium have roman numerals in parentheses?
- Write the chemical formula for titanium(IV) oxide \qquad
- Dinitrogen pentasulfide is \qquad
- Xenon hexafluoride is \qquad
- Why is monocarbon disulfide an incorrect name?
- FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are both iron oxide compounds. What is different about the irons in each compound?
- Why is tripotassium phosphate an incorrect ionic name?
- Lead(IV) oxide is \qquad -

Assessment: MUST include oxidation state (roman numerals in parentheses) for transition metals when you write the name. All compounds are neutral, so do NOT include charges in your final answer on the line. Tip: Do the switchy thing, or do the reverse... depending on what you're doing.

1) Cobalt(II) nitrite \qquad 11) $\mathrm{Fe}_{3} \mathrm{~N}_{2}$ \qquad
2) Phosphorus trichloride \qquad 12) CdS \qquad
3) Ammonium bromide \qquad 13) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ \qquad
4) Cesium selenide \qquad 14) NCl_{3} \qquad
5) Iron(II) perchlorate \qquad 15) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ \qquad
6) Nitrogen disulfide \qquad 16) $\mathrm{K}_{3} \mathrm{PO}_{4}$ \qquad
7) Diphosphorus tetroxide \qquad 17) CF_{4} \qquad
8) Oxygen difluoride \qquad 18) SO_{2} \qquad
9) Dinitrogen monoxide \qquad 19) TiN \qquad
10) Nickel(III) nitride \qquad 20) $\mathrm{W}_{2} \mathrm{O}_{5}$ \qquad

Chapter 6 Part 2: Chemical Names and Formulas

A. Polyatomic Ions

1) A polyatomic ion is a group of covalently bonded atoms that carries a charge-in other words a charged molecule.
2) You need to memorize these eight: $\mathrm{OH}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}, \mathrm{HCO}_{3}^{-}$ OH^{-} \qquad $\mathrm{NO}_{3}{ }^{-}$ \qquad
$\mathrm{CO}_{3}{ }^{2-}$ \qquad $\mathrm{SO}_{4}{ }^{2-}=$ \qquad

$$
\mathrm{PO}_{4}{ }^{3-}=
$$

\qquad
\qquad
$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$ \qquad $\mathrm{HCO}_{3}{ }^{-}$

B. Names \leftrightarrow Formulas for Polyatomic lonic Compounds

1) Treat them just like binaries, except use parentheses when there is more than one polyatomic.

Examples: $\quad \mathrm{Mg}(\mathrm{OH})_{2}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
2) Name to Formula Practice

Potassium sulfate

Aluminum nitrate

Manganese(IV)carbonate

Calcium hydroxide

Ammonium phosphate

Iron(III) acetate
3) Formula to name practice NaHCO_{3}
$\mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}$
$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$
$\mathrm{Cr}\left(\mathrm{SO}_{4}\right)_{3}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$\mathrm{Mg}(\mathrm{OH})_{2}$

Mixed Ionic and Molecular Naming
Formula to Name Flowchart

Chapter Seven Part 2: Calculating Percent Composition of Elements in a Compound
 Percent Composition: the percent by mass of an element in a compound

Experimental based problems

A 8.20 g piece of magnesium combines completely with 5.40 grams of oxygen to form a compound. What is the percent composition of magnesium in this compound?

When a 14.2 g sample of mercury (II) oxide is decomposed into its elements by heating, 13.2 g of Hg is obtained. What is the percent composition of oxygen in this compound?

Calculating Percent Composition from the Formula

Equation: \% mass of element $=\ldots$ total mass of the element in the compound $\times 100$ molar mass of entire compound

Find the percent composition of chlorine in iron(III) chloride

Find the percent composition of oxygen in calcium nitrate

What is the percent composition of sodium in sodium phosphate?

Calculate the percent composition of nitrogen in ammonium oxide.

In which compound does carbon have a greater percentage of the composition by mass? Justify your answer mathematically.
CCl_{4}
$\mathrm{C}_{2} \mathrm{~F}_{2}$
Chromium(III) carbonate

Ch 8 Part 2

Balancing equations with polyatomic ions involved-a short cut.
Treat the polyatomics as a single unit if they are unchanged from the product to reactant side. Water can be treated as HOH .

$$
\ldots \mathrm{AgNO}_{3}+\ldots \mathrm{Cu} \rightarrow \quad \ldots \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \quad \mathrm{Ag}
$$

Chapter 8 Part 2: Reaction Types

Reaction type	General equation	Description	Unbalanced Examples
Singlereplacement	$A X+Y \rightarrow Y X+A$		$\left[\begin{array}{l} \mathrm{Fe}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu} \\ \mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \\ \mathrm{AgNO} \\ \mathrm{NO}_{3}+\mathrm{Cu} \square \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Ag} \\ \mathrm{Cl}_{2}+\mathrm{NaBr} \rightarrow \mathrm{NaCl}+\mathrm{Br}_{2} \end{array}\right.$
Doublereplacement	$A B+X Y \rightarrow A Y+X B$		$\begin{aligned} & \mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3} \\ & \mathrm{FeS}+\mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{~S} \\ & \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$
Synthesis	$A+B \rightarrow A B$		$\begin{aligned} & \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{2} \\ & \mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \\ & 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} \end{aligned}$
Decomposition	$A B \rightarrow A+B$		$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2} \\ & \mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \\ & \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\ & \mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2} \rightarrow \mathrm{BaCl}_{2}+\mathrm{O}_{2} \end{aligned}$
Combustion	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{y} \mathrm{O}_{\mathrm{z}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$		$\begin{aligned} & \mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$

Chapter 9 Part 1: Introduction to Stoichiometry

 Interpreting a Chemical Equation:$$
2 \mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

The recipe for Dr. Seuss Special

$$
1 \text { ham }+2 \text { green eggs = } 1 \text { Dr. Seuss Special }
$$

Based on this recipe:

1) If I made 3 Dr. Seuss Specials, how many hams did I need?
2) If I made 8 Dr. Seuss Specials, how many green eggs did I need?
3) If I have 5 hams, how many green eggs to I need to use all the hams?
4) If I have 30 green eggs, how many hams do I need to use all the eggs?
5) If I have 4 hams and 300 green eggs, how many Dr. Seuss specials can I make?
6) If I have 510 hams and 32 green eggs, how many Dr. Seuss specials can I make?

Mole Ratios

Here's an example of a chemical recipe: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$

Based on the recipe (balanced equation) above:
a) If I have 1.0 mole of Fe with excess oxygen, how many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will I make?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

b) How many moles of oxygen will I need to react with 1.0 mole of Fe ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

c) How many moles of Fe do I need to produce 6.0 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

So, Stoichiometry is simply the calculation of quantities in reactions, and the key to Stoichiometry problems is the MOLE RATIO from the balanced equation. Every Stoichiometry problem uses the MOLE RATIO from the balanced equation

IIA Mole-Mole Calculations

How many moles of chlorine gas are needed to produce 0.0012 moles of HCl according to the reaction below?

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

How many moles of oxygen are produced when 3.2 moles of HCl are made?

$$
2 \mathrm{Cl}_{2} \mathrm{CO}(\mathrm{~g}) 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HCl}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Given 6 moles of Aluminum, find the moles of copper produced.

$$
3 \mathrm{CuCl}_{2}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

IIB Mole to Mass

Given 3.0 moles of Al and excess copper(II)chloride, how many grams of copper will be produced?

$$
3 \mathrm{CuCl}_{2}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

How many grams of water are needed to react with 0.15 moles of chlorine gas?
$2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

IIC Mole to Count (number of representative particle)
How many molecules of oxygen gas are needed to react completely with 40. moles of propanol $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$?

$$
\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

How many water molecules will be produced when 0.056 moles of oxygen are consumed?

$$
\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

IID Mole to Volume

How many liters of oxygen gas are need to react completely with 13 moles of methane, CH_{4} at STP?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many liters of oxygen gas will be produced from the decomposition of 2.0 moles of potassium chlorate? (oxygen candle reaction)

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

Mixed Stoichiometry

1. How many liters of oxygen will be needed to react completely with 58 grams of $\mathrm{C}_{3} \mathrm{H}_{8}$ at STP?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

2. How many liters of oxygen will react with 4.2 moles of phosphorus to form diphosphorus pentoxide at STP?

$$
4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}
$$

3. How many grams of iron will react with 562.2 grams of oxygen to form rust?

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

4. How many grams of phosgene, $\mathrm{Cl}_{2} \mathrm{CO}$, will produce 1.22 grams of hydrochloric acid, HCl , in the presence of excess water?

$$
\mathrm{Cl}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+\mathrm{CO}
$$

5. How many grams of iron(III) oxide (rust) are produced when 2.3 moles of oxygen reacts with iron?

$$
(\text { Ans }=240 \mathrm{~g}) 4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

6. How many grams of carbon will react completely with 3×10^{21} molecules of S_{8} to form carbon disulfide?

$$
4 \mathrm{C}(\mathrm{~s})+\mathrm{S}_{8}(\mathrm{~s}) \rightarrow 4 \mathrm{CS}_{2}(\mathrm{~g})
$$

7. How many liters of oxygen will be needed to react with 0.42 moles of nitrogen to make dinitrogen pentoxide at STP?

$$
2 \mathrm{~N}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}
$$

8. How many grams of butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, are needed to react completely with 82 liters of oxygen at STP?

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

9. How many liters of oxygen are required to react with 25.5 g of magnesium at STP?

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

10. How many molecules of ammonia are produced from 3.0 liters of hydrogen reacting with excess nitrogen at STP?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{l})
$$

Chapter 10 Part 1: Gas Properties Skeleton Notes

Kinetic Theory: \qquad
I. Kinetic Theory as applied to gases.
A) Gas particles have negligible volume compared to container size*
B) Gas particles do not attract or repel each other*
C) Gas particle move constantly, rapidly and randomly
D) All collisions perfectly elastic (particles collide like billiard balls, not marshmallows)
*key characteristics of "ideal gases"
II Gas pressure (units, atmospheric pressure, altitude and air pressure)
A) Gas pressure caused by \qquad
B) Units: SI unit: \qquad
C) Standard Temperature and Pressure $(S T P)=$ \qquad (sea level)

1. Other units: \qquad atm $=$ \qquad $\mathrm{kPa}=$ \qquad $\mathrm{mmHg}=$ \qquad torr $=$ \qquad psi
2. Converting between pressure units.
$5.2 \mathrm{kPa}=$? mmHg
$15 \mathrm{mmHg}=$? atm
37.0 psi = ? torr
$429.7 \mathrm{kPa}=$? atm $=$? psi = ? torr

III Kinetic Energy and Kelvin temperature scale

A) When we measure temperature, we measure average kinetic energy (speed)
B) Gas particle's kinetic energy increases as \qquad
C) Kelvin Temperature scale is \qquad
\qquad $K=$ \qquad ${ }^{\circ} \mathrm{C}$
D) Temperature note for working with gases. \qquad

1 of 1

I Variables Describing Gases

$\mathrm{P}=$ \qquad
$\mathrm{T}=$ \qquad
\qquad
$V=$

$$
\mathrm{n}=
$$

\qquad

II Factors Affecting Gas Pressure

A) Changing the amount of gas particles in a closed container (n).

Doubling the number of gas molecules doubles pressure. Halving the number of molecules halves the pressure

Example: pumping up a playground ball
B) Changing the container gas container volume (T and n stay constant)
Reducing the size of a container increases the gas pressure. Increasing the size decreases gas pressure.

Example: bicycle pump

C) Changing the temperature (V and n stay constant) Increasing the temperature increases pressure. Why?

Example: aerosol can in fire

III The Gas Laws

A) Boyle's Law (Volume-Pressure Change)

1) Verbally: Volume varies inversely with pressure at a constant temperature.
2) Math Equation:

Example 1: A balloon contains 11 L of He gas at 101.3 kPA at sea level. What is the balloon's volume in Denver at 85.3 kPa . (assume temperature is constant)

Example 2: If a piston compresses the air in a 0.52 Liter cylinder to 0.12 liters at 760 mm Hg . What will be the pressure in the cylinder after compression?
A) Charles's Law for Temperature-Volume Change

1) Verbally: The volume of a fixed mass of gas is directly proportional to its temperature (Kelvin) at constant pressure.
2) Math Equation:
3) A balloon shrinks as it gets colder, and expands as it gets warmer.

Example 1: You buy a helium balloon for your friend's birthday. It has a volume of 8.0 liters in the store at 101.3 kPa and $20 .{ }^{\circ} \mathrm{C}$. How large will the balloon be after you leave it sitting in your hot car at $60 .{ }^{\circ} \mathrm{C}$? (pressure still $=101.3 \mathrm{kPa}$)

Example 2: Your friend takes the same balloon (8.0 liters at $20^{\circ} \mathrm{C}$ and 101.3 kPa) with her to Antarctica where the balloon's volume shrinks to 6.9 liters at 101.3 kPa . How cold is it in Antarctica in Kelvins?(Ans $=253 \mathrm{~K}=$ \qquad with sig figs)
B) Gay-Lussac's Law (Pressure-Temperature Interaction)

1) Verbally: The pressure of a gas is directly proportional to its temperature (K)
2) Math Equation:
3) Example 1: The tire pressure in a car's tires is 2.3 atmospheres at $38^{\circ} \mathrm{C}$. What will the tire pressure be at $-10 .{ }^{\circ} \mathrm{C}$?
4) Example 2: The pressure in a cylinder of gas is 760 mm Hg at exactly $0^{\circ} \mathrm{C}$. What is the pressure of the gas at $500 .{ }^{\circ} \mathrm{C}$?

Advanced Gas Law Practice:

1) The temperature of an unknown gas begins at 507 K , and is decreased so that the final temperature is 33.8% of the initial temperature. The pressure remains constant, but the volume changed. If the initial volume was $2.48 \times 10^{3} \mathrm{~L}$, what is the final volume?
2) The final pressure of a gas is 240% of the initial pressure, which was 228.8 kPa . The volume of the gas remained constant at $857.6 \mathrm{~cm}^{3}$. Determine the initial temperature if the final temperature was 1800 K .
3) A large spherical balloon, filled with helium, has a radius of 84.0 cm . A student then heats the balloon, increasing the temperature from $40.0^{\circ} \mathrm{C}$ to 98.0°. Assume that the pressure in the balloon remains constant as both the temperature and volume vary. He measured the radius before and after heating the balloon.
a) Which variable is the independent variable? On which axis does it belong?
b) Which variable is the dependent variable? On which axis does it belong?
c) Calculate the initial $\left(\mathrm{V}_{1}\right)$ and final $\left(\mathrm{V}_{2}\right)$ volumes of the spherical balloon with appropriate units.
d) Calculate the final radius of the spherical balloon in cm .
