## CHEMISTRY

Name $\qquad$
Date $\qquad$ Block $\qquad$

## UNIT Two

## Problem Set

Score:

Do not cheat by copying the work of another person, or by allowing another person to copy your answers. Cheating results in a 0\% grade for both parties involved.

Signature $\qquad$ Date $\qquad$

In the event any or all of this Problem Set is assessed for a grade, it must be signed and dated in order to receive a grade. The work shall be your own.

Problem Sets are generally not accepted late. Late assignments are 50\% off.


Name: $\qquad$ Date: $\qquad$

## CH. 5 WORKSHEET 1: ATOMIC STRUCTURE PRACTICE

1. What is the atomic number of sodium?
2. How many protons does sodium have?
3. How many electrons does a neutral atom of sodium have?
4. How many protons in the nucleus of a potassium atom?
5. How many electrons in a neutral potassium atom.
6. Using the periodic table, complete the following table.

| ISOTOPE | ATOMIC \# | \# PROTONS | \# NEUTRONS | \# ELECTRONS | MASS \# |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{13} \mathrm{C}$ |  |  |  |  |  |
|  | 17 |  | 18 |  | 56 |
|  |  | 26 |  |  | 37 |
|  |  | 17 |  |  | 3 |
|  | 52 |  |  |  |  |

7. How many protons, neutrons and electrons are in lead-207?
8. How many protons, neutrons and electrons are in ${ }^{197} \mathrm{Au}$ ?
9. Give the isotope symbol for an atom with 40 protons, 40 electrons, and 53 neutrons. $\qquad$ .
10. Which is the difference between Lead-206 and Lead-207 in terms of subatomic particles?

The atomic mass for each element is reported on the periodic table. This number is a weighted average of the masses of each of the isotopes of an element. For example, the atomic mass of carbon is reported as 12.011 amu . Carbon is composed primarily of two isotopes: carbon- 12 and carbon- 13 . The atomic mass is calculated from the relative abundance and the masses for these two isotopes. Using the equation below we can calculate the atomic mass for carbon.


Atomic Mass $=\%$ isotope $1 \times$ mass isotope $1+\%$ isotope $2 \times$ mass isotope $2+\ldots$

Carbon-12 makes up $98.93 \%$ of all of the carbon atoms, while carbon-13 is about $1.07 \%$ abundant. Since the carbon-12 isotope is more abundant, its mass is weighted more in the calculation of carbon's atomic mass. An example calculation is done below.

| Isotope | \% Abundance | Mass |
| :--- | :--- | :--- |
| Carbon-12 | $98.93 \%$ | 12.000 amu |
| Carbon-13 | $1.07 \%$ | 13.003 amu |

## Example

What is the atomic mass (the weighted average mass) for carbon?

- substitute values in equation: atomic mass $=(0.9893) \times(12.000 \mathrm{amu})+(0.0107) \times(13.003 \mathrm{amu})$ (convert \% to decimals)
- calculate:
atomic mass $=12.01 \mathrm{amu}$


## Use the equation for atomic mass to answer the following questions.

1. Argon has three naturally occurring isotopes: argon-36, argon-38, and argon-40. Based on argon's reported atomic mass, which isotope do you think is the most abundant in nature? Explain.
2. Copper is made of two isotopes. Copper-63 is $69.17 \%$ abundant and it has a mass of 62.9296 amu . Copper-65 is $30.83 \%$ abundant and it has a mass of 64.9278 amu . What is the weighted average mass of these two isotopes?
3. Calculate the atomic mass of silicon. The three silicon isotopes have atomic masses and relative abundances of $27.9769 \mathrm{amu}(92.2297 \%), 28.9765 \mathrm{amu}(4.6832 \%)$ and 29.9738 amu ( $3.0872 \%$ ).
4. Gallium has two naturally occurring isotopes. The mass of gallium-69 is 68.9256 amu and it is $60.108 \%$ abundant. The mass of gallium- 71 is 70.9247 amu and it is $39.892 \%$ abundant. Find the atomic mass of gallium.
5. Bromine has two naturally occurring isotopes. Bromine-79 has a mass of 78.918 amu and is $50.69 \%$ abundant. Using the atomic mass reported on the periodic table, determine the mass of bromine-81, the other isotope of bromine.
6. Calculate the atomic mass of lead. The four lead isotopes have atomic masses and relative abundances of $203.973 \mathrm{amu}(1.4 \%), 205.974 \mathrm{amu}(24.1 \%), 206.976 \mathrm{amu}$ (22.1\%) and 207.977 amu (52.4\%).
7. Antimony has two naturally occurring isotopes. The mass of antimony-121 is 120.904 amu and the mass of antimony-123 is 122.904 amu . Using the average mass from the periodic table, find the abundance of each isotope. (Remember that the sum of the two abundances must be 100).

## Chapter 5 Worksheet 2: Isotopes and Average Atomic Mass

Elements come in a variety of isotopes, meaning they are made up of atoms with the same atomic number (number of protons) but different atomic mass numbers. These atoms differ in the number of neutrons.

The average atomic mass is the weighted average of all the isotopes of an element.
Example: A sample of cesium is $75 \%$ Cs-133, 20\% Cs-132, and 5\% Cs-134. What is its average atomic mass?

| Answer | $0.75 \times 133=$ | 99.75 |
| :--- | :--- | :--- |
|  | $0.20 \times 132=$ | 26.4 |
|  | $0.05 \times 134=$ | 6.7 |
|  | Total | 132.85 amu |

Guided Practice: Jason is in AP Psychology. Tests are $40 \%$ of his grade, projects are $25 \%$ of his grade, HW is $15 \%$ of his grade, and the rest of this grade comes from quizzes. Here's what he has for each category:
His average test grade is 93 . His average project grade is 75 .
His average quiz grade is 68 . His average HW grade is 84 .
What is his grade in the class?
Determine the average atomic mass of the following mixtures of isotopes

1. $80 \%$ lodine-127 $17 \%$ lodine-126, $3 \%$ lodine-128
2. $50 \%{ }^{197} \mathrm{Au}, 50 \%{ }^{198} \mathrm{Au}$
3. $15 \%$ Iron- $55,85 \%$ Iron- 56
4. An newly-discovered element (Ux) has the following isotope abundances in a parallel universe: $44 \% U x-220,19 \% U x-223$, and $25 \% ~ U x-224$, and the remainder is $U x-226$. What is the average atomic mass that should be reported for this element?
5. Naturally occurring lead is found to have the following isotopic relative abundance. ${ }^{204} \mathrm{~Pb} 3 \%,{ }^{206} \mathrm{~Pb}$ $24 \%,{ }^{207} \mathrm{~Pb} 20 \%$ and ${ }^{208} \mathrm{~Pb} 53 \%$. Calculate the average relative atomic mass of Pb from the data.

## Chapter 6 Worksheet 1: Naming Binary Ionic Compounds

Complete this table by writing the correct formulas for the compounds formed by the anions and cations.

|  | $\mathrm{Cl}^{-}$ | $\mathrm{N}^{3-}$ | $\mathrm{S}^{2-}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ca}^{2+}$ |  |  |  |
| $\mathrm{K}^{+}$ |  |  |  |
| $\mathrm{Sn}^{4+}$ |  |  |  |
| $\mathrm{Al}^{3+}$ |  |  |  |

## Write the Formula

1. Lithium chloride
2. Sodium oxide
3. Calcium lodide
4. Tin(IV)nitride
5. Zinc chloride
6. Cadmium selenide
7. Iron(III)sulfide
8. Lead(II)fluoride
9. Chromium(III)nitride
10. Manganese(III)bromide
11. Cobalt(II)oxide
12. Aluminum sulfide
13. Mercury(II)chloride
14. Magnesium nitride
15. Copper(II)phosphide

Write the Name

1. KBr
2. $\mathrm{PbCl}_{2}$
3. $\mathrm{Ag}_{2} \mathrm{O}$
4. $\mathrm{Cu}_{2} \mathrm{~S}$
5. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
6. $\mathrm{SnO}_{2}$
7. $\mathrm{ZnCl}_{2}$
8. HgBr
9. $\mathrm{Cr}_{2} \mathrm{O}_{3}$
10. $\mathrm{FeCl}_{3}$
11. $\mathrm{Sn}_{3} \mathrm{P}_{4}$
12. MgO
13. $\mathrm{CoBr}_{2}$
14. $\mathrm{Zn}_{3} \mathrm{~N}_{2}$
15. $\mathrm{CaF}_{2}$

Chapter 6 Worksheet 2: More Naming Binary Ionic Compounds
Complete this table by writing the correct formulas for the compounds formed by the anions and cations.

|  | $\mathrm{P}^{3-}$ | $\mathrm{O}^{2-}$ | $\mathrm{F}^{-}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Fe}^{3+}$ |  |  |  |
| $\mathrm{Na}^{+}$ |  |  |  |
| $\mathrm{Pb}^{4+}$ |  |  |  |
| $\mathrm{Mg}^{2+}$ |  |  |  |

## Write the Formula

16. Sodium Bromide
17. Calcium nitride
18. Cobalt(II) bromide
19. Chromium (VI) phosphide
20. Potassium sulfide
21. Lithium oxide
22. Iron (III) chloride
23. Lead(IV) sulfide
24. Silver chloride
25. Zinc oxide
26. Manganese(VI) oxide
27. Copper(II)selenide

Write the Name
16. $\mathrm{BaCl}_{2}$
17. $\mathrm{Al}_{2} \mathrm{O}_{3}$
18. ZnO
19. LiBr
20. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
21. $\mathrm{Na}_{2} \mathrm{~S}$
22. $\mathrm{PbF}_{4}$
23. $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
24. $\mathrm{V}_{2} \mathrm{O}_{5}$
25. $\mathrm{Cu}_{2} \mathrm{~S}$
26. $\mathrm{TiO}_{2}$
27. $\mathrm{MgBr}_{2}$

Chapter 6 Worksheet 3: Names and Formulas of Molecular Compounds

## Write the Formula

1. Boron trichloride
2. nitrogen monoxide
3. dinitrogen dioxide
4. nitrogen trioxide
5. diphosphorus pentoxide
6. silicon dioxide
7. carbon dioxide
8. silicon tetrafluoride
9. selenium dibromide
10. carbon tetrachloride

Write the Name
11. $\mathrm{P}_{2} \mathrm{O}_{4}$
12. $\mathrm{NCl}_{3}$
13. CO
14. $\mathrm{SO}_{3}$
15. $\mathrm{PBr}_{5}$
16. $\mathrm{SO}_{2}$
17. $\mathrm{SiI}_{4}$
18. $\mathrm{CCl}_{4}$
19. $\mathrm{B}_{2} \mathrm{~F}_{6}$
20. $\mathrm{AsCl}_{3}$

Formula to Name


Decide if the compound is ionic or molecular and then answer accordingly.

Write the Formula
Write the Name

1. sulfur dichloride 10. $\mathrm{CaBr}_{2}$
2. titanium(IV)oxide
3. $\mathrm{Na}_{2} \mathrm{O}$
4. copper(III)sulfide
5. $\mathrm{CS}_{2}$
6. phosphorus dioxide
7. potassium phosphide
8. mercury (I)oxide
9. gold(III)chloride
10. sodium nitride
11. dinitrogen tetroxide
18.PbS

Ch 6 WS 5: More Mixed Binary Compound Naming Practice
Name the following

1. $\mathrm{Ba}_{3} \mathrm{P}_{2}$
2. FeO
3. $\mathrm{SiO}_{2}$
4. $\mathrm{CuCl}_{2}$
5. $\mathrm{Mn}_{2} \mathrm{O}_{5}$
6. NaCl
7. $\mathrm{NF}_{3}$
8. MgO
9. $\mathrm{CaF}_{2}$
10. NiS
11. $\mathrm{CO}_{2}$
12. $\mathrm{Cr}_{2} \mathrm{O}_{3}$
13. $\mathrm{AlCl}_{3}$
14. $\mathrm{P}_{2} \mathrm{O}_{4}$
15. $\mathrm{OF}_{2}$
16. $\mathrm{PbS}_{2}$
17. LiBr
18. ZnO
19. $\mathrm{Ag}_{2} \mathrm{~S}$
20. $\mathrm{K}_{3} \mathrm{~N}$

## Ch 6 WS 5 Continued

Write the formulas for the following compounds

1. Zinc phosphide
2. Calcium chloride
3. Nitrogen dioxide
4. Diphosphorus pentoxide $\qquad$
5. Sulfur hexachloride
6. Iron(III) bromide
7. Potassium iodide
8. Chromium(VI) sulfide
9. Aluminum sulfide
10. Magnesium bromide
11. Silicon dioxide
12. Lead(II) oxide
13. Arsenic trichloride
14. Manganese(II) bromide
15. Silver sulfide
16. Copper(II)oxide $\qquad$
17. Barium chloride
18. Cadmium oxide
19. Silicon tetrafluoride
20. Lithium nitride

## Name the following

1. $\mathrm{Li}_{2} \mathrm{O}$
2. AIP
3. $\mathrm{P}_{2} \mathrm{O}_{5}$
4. $\mathrm{MgCl}_{2}$
5. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
6. ZnS
7. $\mathrm{NS}_{2}$
8. NaCl
9. MgS
10. $\mathrm{N}_{2} \mathrm{O}_{4}$ $\qquad$
11. $\mathrm{Cu}_{2} \mathrm{O}$

Write the formulas for the following compounds

1. Nickel(III) chloride
2. Iron(II)oxide
3. Magnesium nitride
4. Iodine pentafluoride
5. Silver sulfide
6. Sodium phosphide
7. Aluminum bromide
8. Carbon monoxide
9. Copper(II) sulfide
10. Magnesium nitride
$\qquad$

## Chapter 7 WS 1b: Mole to Particle Count Conversion

1 mole $=6.02 \times 10^{23}$ representative particles (atoms, molecules, formula units)
$\frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \mathrm{rep} . \text { part }}=\frac{6.02 \times 10^{23} \text { rep. part. }}{1 \mathrm{~mol}}$

Example: How many molecules of $F_{2}$ are in 0.0041 moles of $F_{2}$ ?
$0.0041 \mathrm{~mol} \mathrm{~F}_{2} \times \frac{6.02 \times 10^{23} \mathrm{molec} . \mathrm{F}_{2}}{1 \mathrm{~mol} \mathrm{~F}}=2.4682 \times 10^{21} \approx 2.4 \times 10^{21} \mathrm{molec} . \mathrm{F}_{2}$

1. How many moles are in $6.8 \times 10^{30}$ molecules of nitrogen, $\mathrm{N}_{2}$ ? $\left(\mathrm{Ans}=1.1 \times 10^{7} \mathrm{~mol}\right)$
2. How many molecules are in 98 moles of carbon dioxide, $\mathrm{CO}_{2}$ ? (Ans $=5.9 \times 10^{25} \mathrm{molec}$.)
3. How many moles are in $8.0 \times 10^{20}$ formula units of sodium chloride, NaCl ?(Ans $\left.=0.0013 \mathrm{~mol}\right)$
4. How many formula units are in 283 moles of calcium chloride, $\mathrm{CaCl}_{2}$ ? (Ans $=1.70 \times 10^{26} \mathrm{f}$.u.n)
5. How many atoms are in 3.0 moles of gold, Au ?(Ans $=1.8 \times 10^{24}$ atoms)

## Chapter 7 Worksheet 2: Molar Mass Practice

Molar mass, or gram formula mass, is calculated using the periodic table. Sum the molar masses of all the compounds elements to find the molar mass.

Example: Find the molar mass of $\mathrm{Pb}(\mathrm{CO} 3) 2$
$(297.2)+(2 \times 12.011)+(6 \times 16.00)=417.222 \mathrm{~g}$
$1 \mathrm{~Pb}+2 \mathrm{C}+60$

1. $\mathrm{AlBr}_{3}$
2. $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
3. $\mathrm{NaClO}_{3}$
4. $\mathrm{K}_{2} \mathrm{SO}_{4}$
5. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
6. $\mathrm{Li}_{2} \mathrm{~S}$
7. NaOH
8. $\mathrm{NiCl}_{3}$
9. $\mathrm{CaCO}_{3}$
10. $\mathrm{Mg}(\mathrm{ClO})_{2}$

[^0]$\qquad$

## Chapter 7 Worksheet 3: Molar Mass $\leftrightarrows$ Mole Practice

1. How many moles of sodium bromide, NaBr , are equivalent to 640 grams of NaBr ? ( $\mathrm{Ans}=6.2$ mol )
2. The maintenance staff at Warhill used 31 moles of calcium chloride, $\mathrm{CaCl}_{2}$, to de-ice the entrance to the school after a snow fall. How many grams of calcium chloride did they use? (Ans = 3400 g )
3. A box of baking soda $\left(\mathrm{NaHCO}_{3}\right)$ contains 476 grams of product. How many moles of baking soda does the box contain?(Ans $=5.67 \mathrm{~mol})$
4. A farmer decides to use $2.0 \times 10^{4}$ grams of ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$, to fertilize a small field. How many moles of ammonium nitrate will the farmer use? (Ans $=2.5 \times 10^{2} \mathrm{~mol}$ )
5. A salt lover poured 0.19 moles of table salt $(\mathrm{NaCl})$ on her French Fries. How many grams of salt did she just put on her fries? (Ans = 11g)

## Ch 7 WS 3 Continued

6. A car's gas tank hold $3.6 \times 10^{4}$ grams of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$. How many moles of octane does the gas tank hold?(Ans $=320 \mathrm{~mol}$
7. A chemical reaction requires using 11.3 moles of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$. How many grams of ammonium phosphate will be used?(Ans = 1690 g )
8. A 5.00 ml dose of Emetrol (anti-nausea medication) contains $2.15 \mathrm{x}_{10}{ }^{-2} \mathrm{~g}$ of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$. How many moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are in each 5 ml dose? (Ans $=2.19 \times 10^{-4} \mathrm{~mol}$ )
9. You are very thirsty and consume 28 moles of water. How many grams of water did you just drink? $\left(\right.$ Ans $\left.=5.0 \times 10^{2} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)$
$\qquad$

## Chapter 7 Worksheet 4: Molar Volume $\leftrightarrows$ Mole Practice

1 mole $=22.4$ liters gas at STP $=6.02 \times 10^{23}$ representative particles $=$ molar mass, grams

1. How many mole of chlorine gas are in a 14 liter cylinder at STP?(Ans $=0.63 \mathrm{~mol})$
2. A 0.500 Liter laboratory flask is filled with argon. How many moles of Argon does the flask contain at STP?(Ans $=0.0223 \mathrm{~mol})$
3. A weather balloon contains 53 moles of helium. What is the volume of the balloon in liters at STP?(Ans = 1200 L)
4. A cow gives off methane gas, $\mathrm{CH}_{4}$, every time it belches. How many liters of methane gas did a cow's 1.2 mole belch produce at STP? (We'll assume the entire belch was methane.) (Ans = 27 L )

## Review questions:

5. How many grams of methane are in 1.2 moles of methane, $\mathrm{CH}_{4}$ ? (Ans $\left.=19 \mathrm{~g}\right)$
6. How many molecules of methane are in 1.2 moles of methane? (Ans $\left.=7.2 \times 10^{23} \mathrm{molec}\right)$

Name $\qquad$

## Chapter 7 Worksheet 5: Mixed Mole Practice Problems

 1 mole $=22.4 \mathrm{~L}$ gas (at STP) $=$ molar mass $=6.02 \times 10^{23}$ rep. part.1. Convert 6.0 moles of lithium oxide, $\mathrm{Li}_{2} \mathrm{O}$, to formula units
2. How many grams of magnesium sulfate are in 5.000 moles of $\mathrm{MgSO}_{4}$ ?
3. What would be the volume in liters of a balloon containing 4.38 moles of He at STP?
4. What is the density in $\mathrm{g} / \mathrm{L}$ of Argon gas?
5. How many grams are in $2.0 \times 10^{24}$ molecules of nitrogen dioxide, $\mathrm{NO}_{2}$ ?
6. What volume would $2.0 \times 10^{24}$ molecules of nitrogen dioxide occupy?
7. A sample of carbon dioxide gas, $\mathrm{CO}_{2}$, occupies 60.0 liters at STP. How many molecules is this?
8. What is the mass of 60.0 liters of carbon dioxide?
9. A 6.0 grams sample of nitrogen gas, $\mathrm{N}_{2}$, is in a container at STP. What volume is this container?

## Chapter 7 Worksheet 5 Continued

10. How many molecules of nitrogen are in 6.0 grams of nitrogen gas, $\mathrm{N}_{2}$ ? How many atoms of nitrogen?
11. How many formula units of lithium chloride are in a 3.2 gram crystal of LiCl ?
12. What is the difference between a formula unit and a molecule?
13. What is the temperature and pressure at STP?
14. What is the similarity between a dozen and a mole?

Answers:1: $3.6 \times 10^{24}, 2: 601.9 \mathrm{~g}, 3: 98.1 \mathrm{~L}, 4: 1.78 \mathrm{~g} / \mathrm{L}, 5: 150 \mathrm{~g}, 6: 74 \mathrm{~L}, 7: 1.61 \times 10^{24} \mathrm{molec} ., 8: 118$ $\mathrm{g}, 9: 4.8 \mathrm{~L}, 10: 1.3 \times 10^{23}$ molec. N2, $2.6 \times 10^{23}$ atom N, 11: $4.5 \times 10^{22}$ f.u.n. LiCl

| Name | Date | Block |
| :--- | :--- | :--- |

## Ch 7 WS 6: More Mixed Mole Practice Problems

1. Calculate the mass in grams of $1.058 \times 10^{24}$ formula units of $\mathrm{CaCl}_{2}$. (Ans $=195.0 \mathrm{~g}$ )
2. Calculate the mass in grams of $45.31 \mathrm{~L}^{\text {of } \mathrm{CH}_{4} \text { at } \operatorname{STP}(\mathrm{Ans}=32.44 \mathrm{~g})}$
3. Calculate the volume in liters of $2.0 \times 10^{22}$ molecules of $\mathrm{NO}_{2}$ at $\operatorname{STP}(\mathrm{Ans}=0.74 \mathrm{~L})$


## Ch 7 WS 6 Worksheet Continued

5. Cobalt metal is added to steel to improve its resistance to corrosion. Calculate the number of moles of cobalt in $5.00 \times 10^{20}$ atoms of Cobalt. $\left(8.31 \times 10^{-4} \mathrm{~mol}\right)$
6. Isopentyl acetate $\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\right)$, is the compound responsible for the scent of bananas. Bees release about $1 \times 10^{-6}$ gram of this compound when they sting. The resulting banana scent attracts other bees to join the attack. How many molecules of isopentyl acetate are released in a typical bee sting? I'm thinking I won't eat bananas near a bee hive! ( $5 \times 10^{15}$ molecules)
7. Vitamin pills contain copper (III) oxide to provide the trace amounts of copper needed by the body. If each vitamin pill contains 3.0 milligrams of copper (III) oxide, how many copper atoms are in each vitamin pill? Hint: remember to convert milligrams to grams. ( $2.06 \times 10^{19}$ atoms)
8. The Hindenburg blimp had a hydrogen gas, $\mathrm{H}_{2}$, capacity of $140,000,000$ liters. How many grams of hydrogen were required to fill the Hindenburg? Yes, this is the blimp that crashed and burned so famously. (Ans $=1.3 \times 10^{7} \mathrm{~g}$ )

## Mole Conversion Practice

1. How many grams are in 18 L of Helium gas at STP?(Ans $=3.2 \mathrm{~g} \mathrm{He})$
2. How many molecules of $\mathrm{PCl}_{3}$ are in 7.8 grams of $\mathrm{PCl}_{3}$ ? $)\left(\mathrm{Ans}=3.4 \times 10^{22}\right.$ molec. $\left.\mathrm{PCl}_{3}\right)$
3. How many atoms of Neon are in a 15 L balloon of Neon at STP? $\left(\mathrm{Ans}=4.0 \times 10^{23}\right.$ atom Ne$)$
4. How many formula units of NaBr are in 6.8 moles of NaBr ?(Ans $=4.1 \times 10^{24} \mathrm{NaBr}$ f.u.n.)
5. How many grams of Lithium are in 8.2 moles of Lithium? $(\mathrm{Ans}=57 \mathrm{~g} \mathrm{Li})$
6. Convert 19 Liters of Argon, Ar, to grams of Argon at STP.(Ans $=34 \mathrm{~g} \mathrm{Ar})$
7. Convert $3.4 \times 10^{20}$ molecules of $\mathrm{NO}_{2}$ to grams of $\mathrm{NO}_{2}$. $\left(\mathrm{Ans}=0.026 \mathrm{~g} \mathrm{NO}_{2}\right)$
8. Convert 16.0 grams of $\mathrm{O}_{2}$ to Liters of $\mathrm{O}_{2}$ at STP. $\left(\right.$ Ans $\left.=11.2 \mathrm{~L} \mathrm{O}_{2}\right)$
9. Convert 4.5 moles of Si to atoms of Si (Ans $=2.7 \times 10^{24} \mathrm{Si}$ atoms)
10. Convert 34 Liters of $\mathrm{F}_{2}$ gas to grams of $\mathrm{F}_{2}$ gas at STP. (Ans $=58 \mathrm{~g} \mathrm{~F}_{2}$ )

## Chapter 8 WS 1: Word Equations

Write the word equations below as skeleton chemical equations.
Example: Solid sodium bromide and fluorine gas react to form solid sodium fluoride and liquid bromine.

$$
\mathrm{NaBr}(\mathrm{~s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaF}+\mathrm{Br}_{2}(\mathrm{l})
$$

1. Copper metal solid is heated with oxygen gas to form copper(II)oxide.
2. Aqueous iron(III) chloride reacts with aqueous sodium sulfide to yield solid iron(III) sulfide and aqueous sodium chloride
3. Aluminum metal reacts with aqueous copper(II)chloride to yield aqueous aluminum chloride and solid copper.
4. Solid Carbon reacts with oxygen gas to produce carbon dioxide gas.
5. When heated, dinitrogen tetroxide gas decomposes to nitrogen gas and oxygen gas.
6. Solid lodine reacts with gaseous fluorine to form liquid iodine pentafluoride.
7. Aqueous magnesium fluoride reacts with aqueous calcium bromide to form solid calcium fluoride and aqueous magnesium bromide.
8. Silver metal reacts with aqueous zinc chloride to form solid silver chloride and zinc metal.
$\qquad$
$\qquad$
$\qquad$

## C. 1 SUPPLEMENT: KEEPING TRACK OF ATOMS

## Fill-in-the-Blanks

1. A chemical equation is balanced if there are $\qquad$ of each kind of $\qquad$ on both sides of the equation.
2. Before looking at equations, determine the number of atoms of each kind in each of the following:
a. $\mathrm{CaCO}_{3}=\_\mathrm{Ca}, \ldots \mathrm{C}, \ldots \mathrm{O}$
b. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=\longrightarrow \mathrm{N}, \longrightarrow \quad \mathrm{H}, \longrightarrow \mathrm{S},-\mathrm{O}$
c. $3 \mathrm{H}_{2}=$ $\qquad$ H
d. $4 \mathrm{Mg}(\mathrm{OH})_{2}=$ $\qquad$
$\qquad$
e. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=$ $\qquad$ Ba, $\qquad$ $\mathrm{N}, \ldots$
3. Now look at the equations. Count the number of atoms of each kind on each side of the following and determine if the statement is a balanced equation.
a. $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$

Reactants Products
_ $\mathrm{Na} \longrightarrow$


Balanced? Yes $\qquad$ No
b. $4 \mathrm{NH}_{3}+6 \mathrm{NO} \longrightarrow 5 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Reactants
Products


Balanced? Yes $\qquad$ No $\qquad$
4. For each of the following, show the number of each type of atom on each side of the reaction. Decide if the chemical equation is balanced or not.
$\begin{array}{lll}\mathrm{NaCl}+\mathrm{F}_{2} & \longrightarrow & \mathrm{NaF}+\mathrm{Cl}_{2} \\ & \mathrm{Na} & \end{array}$
$\qquad$
$\qquad$

Balanced? Yes $\qquad$ No $\qquad$
b. $3 \mathrm{NaBr}+\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow \quad 2 \mathrm{HBr}+\mathrm{Na}_{3} \mathrm{PO}_{4}$ $\qquad$ No $\qquad$

c. $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{N}_{2} \mathrm{O}_{4} \longrightarrow 3 \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Balanced? Yes $\qquad$ No $\qquad$
d. $4 \mathrm{Ag}+4 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$

Balanced? Yes $\qquad$ No $\qquad$
e. $2 \mathrm{Bi}+3 \mathrm{~F}_{2} \longrightarrow 2 \mathrm{BiF}_{3}$

Balanced? Yes $\qquad$ No $\qquad$
f. $\mathrm{Al}+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{Ni}$

Balanced? Yes $\qquad$ No $\qquad$
g. $3 \mathrm{NaBH}_{4}+4 \mathrm{BF}_{3} \longrightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}+3 \mathrm{NaBF}_{4}$

Balanced? Yes $\qquad$ No $\qquad$
h. $4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3} \longrightarrow 6 \mathrm{~N}_{2}+\mathrm{O}_{2}+12 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$

Balanced? Yes $\qquad$ No $\qquad$
i. $\mathrm{Ca}_{10} \mathrm{~F}_{2}\left(\mathrm{PO}_{4}\right)_{6}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{HF}+3 \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+7 \mathrm{CaSO}_{4}$
$\qquad$ No $\qquad$

## Ch 8 WS 3 Simple Balancing Equations

Use coefficients to balance each equation.
$\ldots \_\mathrm{Na}+\ldots \mathrm{MgF}_{2} \rightarrow$ __ $\mathrm{NaF}+\ldots \mathrm{Mg}$
$\ldots \_\mathrm{Mg}+\ldots \mathrm{HCl} \rightarrow \ldots \mathrm{MgCl}_{2}+\ldots \mathrm{H}_{2}$
$\ldots \mathrm{Cl}_{2}+\ldots \mathrm{KI} \rightarrow \ldots \mathrm{KCl}+\ldots \mathrm{I}_{2}$
$\ldots \mathrm{NaCl} \rightarrow \ldots \mathrm{Na}+\ldots \mathrm{Cl}_{2}$
$\ldots \mathrm{Na}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{Na}_{2} \mathrm{O}$
$\ldots \mathrm{Na}^{+} \ldots \mathrm{HCl} \rightarrow \ldots \mathrm{H}_{2}+\ldots \mathrm{NaCl}$
$\ldots \_\mathrm{K}+\ldots \mathrm{Cl}_{2} \rightarrow \ldots \mathrm{KCl}$

## Ch 8 WS 4: Balancing Chemical Equations

Balance the equations below:

1) $\qquad$ $\mathrm{N}_{2}+$ $\qquad$ $\mathrm{H}_{2} \rightarrow$ $\qquad$ $\mathrm{NH}_{3}$
2) $\qquad$ $\mathrm{KClO}_{3} \rightarrow$ $\qquad$ $\mathrm{KCl}+$ $\qquad$ $\mathrm{O}_{2}$
3) $\qquad$ $\mathrm{Fe}+\ldots \mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$
4) $\qquad$ $\mathrm{H}_{2}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
5) $\qquad$ $\mathrm{CH}_{4}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
6) $\qquad$ $\mathrm{C}_{3} \mathrm{H}_{8}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{CO}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
7) $\qquad$ $\mathrm{C}_{8} \mathrm{H}_{18}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{CO}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
$\qquad$

## Ch 8 WS 5: More Balancing Chemical Equations

Balance the equations below:

1) $\qquad$ P + $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{P}_{2} \mathrm{O}_{5}$
2) $\qquad$ Al + $\qquad$ $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ $\qquad$ $\mathrm{Fe}+$ $\square$ $\mathrm{Al}_{2} \mathrm{O}_{3}$
3) $\qquad$ $\mathrm{S}_{8}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{SO}_{3}$
4) $\qquad$ $\mathrm{CO}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\ldots \mathrm{O}_{2}$
5) $\qquad$ $\mathrm{K}+$ $\qquad$ $\mathrm{MgBr} \rightarrow$ $\qquad$ $\mathrm{KBr}+$ $\qquad$ Mg
6) $\qquad$ $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
7) $\qquad$ $\mathrm{H}_{2} \mathrm{O}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}_{2}$
8) $\qquad$ $\mathrm{NaBr}+\ldots \mathrm{CaF}_{2} \rightarrow$ $\qquad$ $\mathrm{NaF}+$ $\qquad$ $\mathrm{CaBr}_{2}$

## Ch 8 WS 6: Still More Balancing Chemical Equations

Balance the equations below:

1) $\qquad$ $\mathrm{C}_{2} \mathrm{H}_{6}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{CO}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
2) $\qquad$ $\mathrm{Mg}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ MgO
3) $\qquad$ $\mathrm{F}_{2}+\ldots \mathrm{SiO}_{2} \rightarrow$ $\qquad$ $\mathrm{SiF}_{4}+\ldots \mathrm{O}_{2}$
4) $\qquad$ $\mathrm{AgCl}+$ $\qquad$ $\mathrm{Fe} \rightarrow$ $\qquad$ $\mathrm{FeCl}_{3}+$ $\qquad$ Ag
5) $\qquad$ $\mathrm{O}_{2}+$ $\qquad$ $\mathrm{F}_{2} \rightarrow \ldots \mathrm{OF}_{2}$
6) $\qquad$ $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+$ $\qquad$ $\mathrm{O}_{2} \rightarrow$ $\qquad$ $\mathrm{CO}_{2}+$ $\qquad$ $\mathrm{H}_{2} \mathrm{O}$
7) $\qquad$ $\mathrm{NI}_{3}+\rightarrow$ $\qquad$ $\mathrm{N}_{2}+$ $\qquad$ $\mathrm{I}_{2}$
8) $\qquad$ $\mathrm{Li}+$ $\qquad$ $\mathrm{N}_{2} \rightarrow \quad \mathrm{Li}_{3} \mathrm{~N}$

[^0]:    1: $\mathrm{AlBr}_{3}(266.7 \mathrm{~g}), 2: \mathrm{NaClO}_{3}(106.4 \mathrm{~g}), 3: \mathrm{Fe}_{2} \mathrm{O}_{3}(159.7 \mathrm{~g})$, 4: $\mathrm{NaOH}(40.0 \mathrm{~g}), 5: \mathrm{CaCO}_{3}(100.1 \mathrm{~g}), 6:$ $189.4 \mathrm{~g}, 7: 174.3 \mathrm{~g}, 8: 45.9 \mathrm{~g}, 9: 165.0 \mathrm{~g}, 10: 127.2 \mathrm{~g}$ (note formula weights given to nearest 0.1 gram to account for rounding differences-don't worry if you're off by 0.1 gram)

