Chemistry Unit 2
Primary reference: CHEMISTRY, Addison-Wesley

Spr 17 B3

Topic Scientific Investigation 1.2 SOL 1b, 1g	Essential Knowledge Understand and use Material Safety Data Sheet (MSDS) warnings including: handling chemicals, lethal dose (LD), disposal and chemical spill <u>clean-up.</u>	Study and Practice Ch 7: Read pp. 188-
Investigation 1.2	chemicals, lethal dose (LD), disposal and chemical spill <u>clean-up.</u>	Ch 7: Read pp. 188-
		191 on percent
	The percent by mass of an element in a compound can be determined: % by mass of element = total mass of element in compound X 100 molar mass of the compound	composition
Atomic Structure and Periodic Relationships	Democritus:Greek philosopher who suggested the idea of atoms @ 400 BC. John Dalton atomic theory of 4 postulates was based on experimentation—early 1800s J.J. Thomson and Millikan discovered the electron and it's charge respectively. Ernest Rutherford's gold foil experiment showed the atom was mostly empty space with a small, dense, positively charge nucleus.	Chapter 5: pp. 107-112 on early atomic models.
2.2 SOL 2a,2c,2d, 2e,2i	Atoms are made of protons , neutrons in the nucleus. A cloud of electrons surrounds the nucleus. An atom's atomic number = the number of protons . All atoms of the same element have the same number of protons . A proton has a positive charge and a relative mass of one. The number of electrons equals the number of protons in a neutral atom. An electron has a negative charge and a relative mass of zero. A neutron has no charge and a relative mass of one. Isotopes are atoms of the same element with a different number of neutrons (Example C-12 and C-13). mass number = #protons + # neutrons	pp. 113-117 about atomic numbers
	The atomic masses on the periodic tables are a weighted average of the isotope masses. Dmitri Mendeleev created a Periodic Table based on the elements' masses and physical and chemical properties. Moseley reordered the table slightly based on atomic number. Rows are called periods and columns are called groups or families. Named families are alkali metals, alkaline earth metals, halogens, and noble gases.	pp. 123-126 about the perioidic table.
Nomenclature, Formulas, and	Subscripts in a chemical formula represent the relative number of each type of atom. The subscript follows the element symbol. Example: a water molecule, H₂O , has 2	Chapter 6: pp 133-137 on molecular
Reactions	nydrogen atoms and one oxygen atom.	and ionic compounds.
3.2	Parentheses are used when a subscript affects a group of atoms. Example: Mg(NO₃)₂ has a ratio of one magnesium atom, 2 nitrogen atoms and 6 oxygen atoms in the compound.	pp 138-140 on chemical formulas.
SOL 3a, 3b, 3c	Molecules form from non-metals and ionic compounds form from a metal cation and a non-metal anion. Metals lose electrons to become cations . Non-metals gain electrons to form anions . For ionic compounds, the charges of the anions and cations must add to zero. In binary ionic compounds, we name the metal first followed by the anion ending with —ide. Roman numerals are used to show the charge/oxidation state of metals other than alkali or alkaline earth metals. In binary molecular compounds, we use prefixes in front of the element names and end with —ide.	pp 149-151 and 158-159
	A chemical equation shows the formulas of all the reactants on the left hand side of the arrow, and the formulas for all the products on the right hand side. Chemical reactions follow the Law of Conservation of Mass —matter is neither created nor destroyed during a chemical reaction. We balance chemical equations using coefficients in front of each substance in the equation so that each side has the same number of atoms of each element.	Chapter 8: pp. 203-211 on chemical equations
Molar Relationships 4.2	Molar mass is the sum of all the atomic masses in a compound. The mole can be used to convert between mass, particles and gas volume using unit cancelation. 1 mole = 6.02 x 10 ²³ things = molar mass = 22.4 L(gas at 0°C & 1atm only) Ionic compounds dissociate in water to form electrolyte solutions (conduct electricity) whereas molecular compounds do not.	Ch 7 pp 176-190 on molar conversions and % composition.
SOL 4a, 4b, 4d		Chapter 17 pp. 482-485 on electrolytes
Phases of Matter and Kinetic Molecular Theory 5.2 SOL 5a, 5d	Kinetic Molecular Theory describes the behavior of gases based on a model of an ideal gas. Ideal gases do not exist but help us understand how real gases behave. Real gases exist, have intermolecular forces, particle volume and can change states, whereas ideal gases do not. Avogadro's hypothesis: Equal volumes of gas at the same pressure and temperature will contain the same number of gas particles. 1 mole gas = 22.4 Liters at 0°C and 1 atm.	Chapter 10 and Chapter 12: pp. 267-272 and pp. 327-328 and p. 347 on gases.

Unit 2 Objectives

Chemistry, Addison-Wesley, 2002

- **Basic Atomic Structure**
 - A. Early Atomic Models through Rutherford
 - B. Atomic number, mass number, atomic mass and isotopes
- Introduction to the Periodic Table
 - A. Parts of the periodic table
- III. Chemical Names and Formulas
 - A. Differentiating between molecular and ionic compounds
 - B. Ionic charges of Elements
 - C. Names ↔ Formulas Binary Ionic Compounds
 - D. Names \leftrightarrow Formulas Binary Molecular Compounds
 - E. Diatomic Elements (Review)
- IV. Mole Calculations
 - A. Molar Mass
 - 1. Review of counting atoms in formulas (p198#460)
 - 2. Calculating molar mass(p179#7;p181#9,10;p198#50,51)
 - 3. Converting between moles and molar mass(p183#16-19;p186#24,27;p198#55,56)
 - B. Molar Volume of Gases at STP
 - 1. Avogadro's hypothesis
 - 2. Converting between moles and molar volume at STP (1 mole gas = 22.4 L)(p184#20,21;p198#57)
 - c. More Molar Conversions
 - Conversions: mass ↔ volume, mass ↔ count, volume ↔ count (p186#25;p198#59)
- V. Chemical Reactions
 - A. Understanding chemical reaction symbols
 - B. Balancing Chemical Reactions

Objectives (SOL) book problems

- 1. Identify the contributions of Democritus, Dalton, Thomson, Rutherford, and Millikan, to the development of the modern atomic model. (2i)
- 2. Describe the structure of an atom, including the location of protons, electrons and neutrons.(2c) p129#37, 38, 39, 40, 41.
- 3. Define the charges and relative masses of electrons, protons and neutrons.
- 4. Determine the number of protons, neutrons and electrons in elements and isotopes. (2a)p115#7,8;p116#9, p121#23;p129#42
- 5. Explain how isotopes differ, yet are still the same element.(2a)p121#21
- 6. Calculate the atomic mass for an element given the weighted averages of the isotopes.(2b)p129#53
- 7. Identify the contributions of Mendeleev and Mosely to the modern periodic table.(2i)
- 8. Identify the following areas on the periodic table: alkali metals, alkaline earth metals, halogens, noble or inert gases, representative elements, transition metals, non-metals, metals, and metalloids.(2d)
- 9. Distinguish between ionic and molecular compounds.(2g, 3a) p167:#49
- 10. Count the number of atoms present in compound formulas(3c)p166#71
- 11. Explain how anions and cations are formed.(2g) p136#1,2;p145#17; p166#46,53
- 12. Predict monatomic ion charges using the periodic table (2g) p145#16;p148#20, 22
- 13. Use the roman numeral Stock System to identify and name transition metal ions.(3a)p148#23
- 14. Predict the ionic compound formed from any two monatomic ions.(3c)p151#24,25
- 15. Write the formulas for binary ionic and molecular compounds given their names and visa versa.(3a&3c) Ionic(p155:#29, p166#58,61, p167#68) molecular (p159#38, p160#4`, p167#64) lonic(p153#26,27; p156#30,31;p167#67,69) Molecular(p159#37; p160#41; p167#64)
- 16. Name the seven diatomic elements.(3a)
- 17. Explain Avogadro's Hypothesis.(4a)
- 18. Memorize molar volume = 22.4 Liter at 1 atmosphere and 0°C(4a)
- 19. Calculate the molar mass of a substance given the formula.(4a)
- 20. Calculate conversions between moles, molar masses, molar volumes, and particle counts.(4a)
- 21. Master reading and writing chemical equations using chemical formulas and symbols correctly. (3b)
- Explain the Law of Conservation of Mass 22.
- Balance equations (3b)
- 24. Explain a catalyst's role in a chemical reaction. (3f)

Chapter 5 Atomic Structure Skeleton Notes

What is an atomic number of an element and where do we find it?	·The number of pt in the element ·Always a whole-number integer ·DEFINES (identies) the element
What is a <u>mass</u> <u>number</u> ?	·# of n° and p+ (in hucleus) ·Always a whole #
What is an <u>isotope</u> ?	· An element w/ same # of pt, BUT DIFF. # of NEUTRONS!!
How do you read isotope symbols? Ji or Life 3 pt	top #= Mass # bottom #= atomic # (atomic mass) * n and p
3pt <	OF LITHIUM
How many protons, neutrons and electrons are in (1) Cl	protons 12, neutrons 8, electrons
How many protons, neutrons and electrons are in $^{37}_{17}$ Cl	p ⁺
How many protons, neutrons and electrons are in Calcium 42? What is the atomic	p ⁺ <u>20</u> , n ⁰ <u>22</u> , e ⁻ <u>20</u>
mass of an element and where do we find it?	(aka: mass number) The weighted avg appears on PT

Calculating Atomic mass

Elements contain a mix of isotopes. If we are given the percent composition of each isotope, we can calculate the atomic mass using weighted averages.

Analogy: Weighted Grades

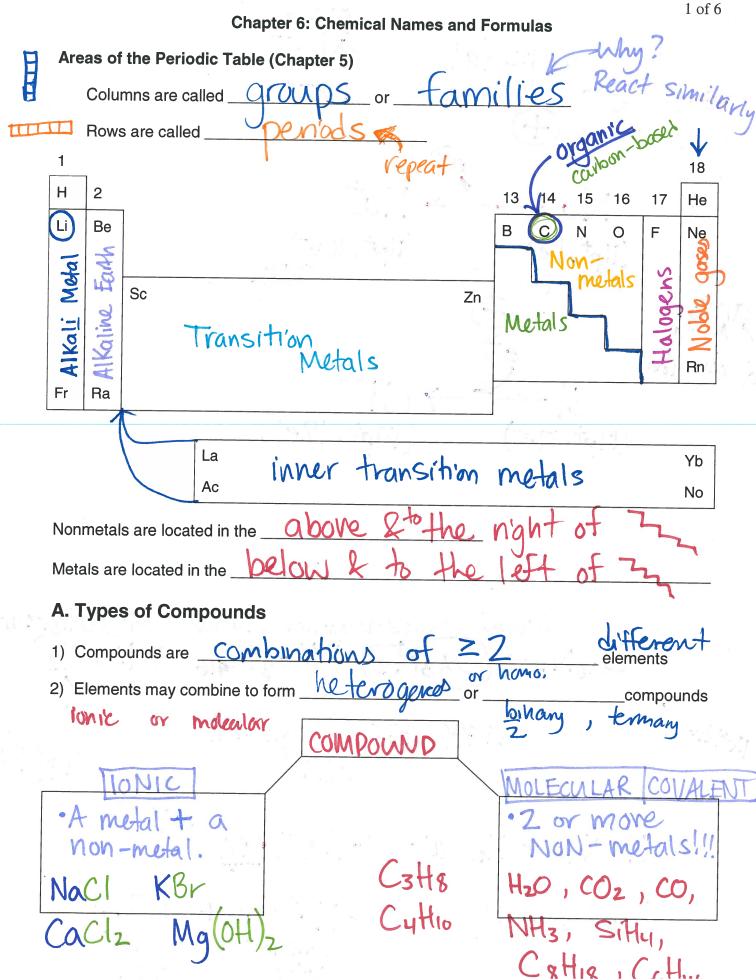
Туре	% Weight	x Score	= Contribution
Tests	50%	75%	
Quizzes	25%	92%	
Homework	25%	95%	

We use mass number x % abundance (composition) to calculate the approximate atomic mass Example: Find the atomic mass of chlorine using the data below. (Ans = 35.4846 amu)

Ì	Isotope	% Abundance	x mass number	= Contribution
1	Cl-35	<u>75.77</u> 7 ₆ (35	
4	Cl- <u>37</u>	24.23	37	

$$\frac{32}{(0.7577 \cdot 35) + (0.2423 \cdot 37)} =$$

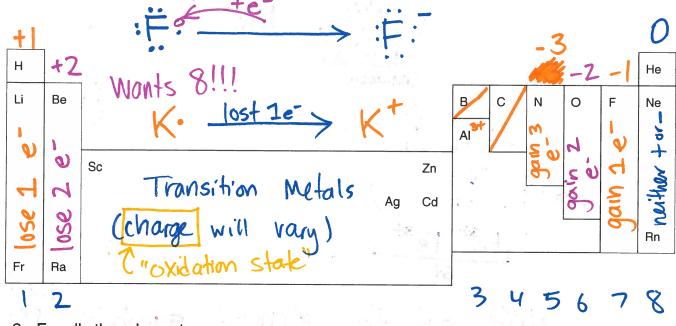
We can calculate a more accurate value by using % abundance and isotope mass in atomic mass units, amu, to calculate the value. (Ans = 35.4528)

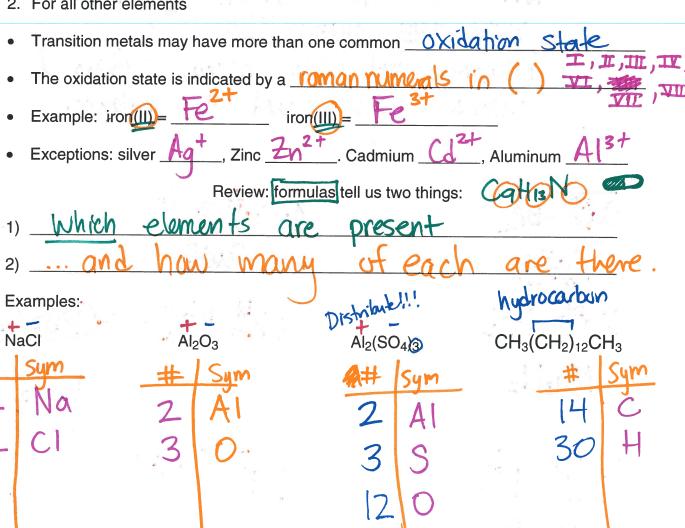

τ	o calculat	e the value. (Alis	- 33.4320]	
	Isotope	% Abundance	x amu	= Contribution
	Cl-35	75.77	34.969	
	Cl-37	24.23	36.966	

Practice: Naturally occurring oxygen contains 99.757 % Oxygen-16, 0.038% Oxygen-17 and 0.205% Oxygen-18. Calculate the approximate atomic mass.(Ans = 16.00448 amu)

Practice: Use the atomic mass unit data in the following table to calculate oxygen's atomic mass more

accurately. (Ans = 15.999 amu)


Isotope	% abundance	amu
0-16	99.757	15.995
O-17	0.038	16.999
O-18	0.205	17.999


v ^x	-(-1) = +1	(M ⁺)	2 of 6
	0) 101110 001111 00112	metal	combines with a
	non-metal	MM)	ν . • . • .
CADIO	a) cations are metal atoms that have	LOST	s, so they acquire a
paws-	charge charge	*	
N			
(00	$Na \longrightarrow Na^{\dagger}$	•	
- 4 - 4	(llpt, lle) (llpt, b) anions are nonmetal atoms that have		electrons so they acquire
anio	The particular of the particul		
11	T (====================================		
y meg.	W ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_	7. F.
		100-	¥
	(17pt, 17e-) (17pt	, 18e-)	
	Formula Unit: Lowest whole-no	umber ration	of cation: anior
	CusNy > (Cu3N2)	Mag Claro	-MqCl2
	Properties of Ionic Compounds		
MANN		! high MP	I was I'M
las	Melting points are $\frac{\sqrt{ERY}}{\sqrt{VERY}}$. Physical State at room temperature $\frac{S}{\sqrt{C}}$. Ionic Compounds dissociate into ions in wat $\frac{S}{\sqrt{C}}$.	olid	(1 dissolution)
	Ionic Compounds dissociate into ions in wat	er when they dissolve.	anveous
	$N_{\alpha}C_{\alpha}(s) + H_{\alpha}O(t) \longrightarrow$	Nacl (a)	
	Macron Macro		
	Nacl(s) + H20(c) ->		
5.	e boline soldke	cation	anim

B. Common Oxidation States (Charges) of Elements in Ionic Compounds

1. For alkali metals, alkaline earth metals, non-metals and noble gases.

2. For all other elements

MM=

almol

	C. Billary lone Compounds
	1) Binary compound: a compound w/2 duff elem.
4	2) Ionic compounds are A M S The positive charges from
	the cation must be by the negative charges from the anion
	3) The cation (metal) is always written first, and the anion ends in
	Examples: sodium chloride is Naci
•	
	$\frac{\text{(ust)}}{\text{Iron(III)}} \text{oxide is } = \frac{1}{2} 1$
	$Fe^{3+} Fe^{3+}$ $O^{2-} O^{2-} O^{$
	4) Steps for writing Binary Ionic Formulas from names:
	4) Steps for writing Binary Ionic Formulas from names: a) Write out the element gymbols Fe, a half the charge [1][[]]
	WITH THE CHARGE!!!!!
43 * 9	b) Figure out how many cotions &
	anions you need to balance.
	Examples:
44	Calcium bromide copper(II)chloride
	Ca 82 1: Cu 22ct
	CaBis
	Magnesium nitride lead(IV)sulfide
	Mg2 Pb2Sy
	Man
	(Mg31V2)
	Zinc phosphide Lithium oxide
	7^{2+} p^{3-}
	$(\pm n_3 r_2)$

$C^2 - \Theta\Theta$	Formula -> Name
5) Steps for naming binary ionic compounds from fo	magnesing of 6 magnesing of 6 mulas with transition metals chloride.
a) Write out the motal (
IF it's "chade" (trans.)	cation)'s name. DONE
MICITE STICKY (metal)	Open ()
c) Write anion (non-meter	1) <u>-1de</u>
d) 1 (11 11) WITH	Oxidation State
	Company of the
K_3N SnF_2	F <mark>ē₂</mark> Ø₃
potassium nitride tin(II) fluor	
K [†] PH	F 3 02-
Sh est	te 0
+2 -2	
TiO ₂ CaO	02-
titanium (IV) oxide	+6
丁:世202-	6-
O^{2-}	1-100/15
D. Binary Molecular Compounds	N-metals
1) Composed of two	
	or ions are involved.
2) Because they are molecules, no parenthoses	are involved.
3) Prefixes are used to show the number of each type	e of atom present:
1 =	hexa-
2 =	repta-
3 = 8 =	octa-
4 = <u>tetra</u> 9 =	gona-
$5 = \underline{\text{penta}} = 10 = \underline{\text{c}}$	deca-
4) Exceptions: Do not use monofor _the	First element!!!
CO ₂ Drop the prefixes ending –a or –o with oxy	gen compounds

W20 monoxide Examples: Phosphorus trichloride	
Examples:	6 of 6
Phosphorus trichloride PC 3	
Nitrogen dioxide	
Dinitrogen pentoxide N2O5	
Carbon monoxide	
CFA Carbon tetrafluorite	
P_2O_5	à 3°
SiO2 (glass or sand)	9 * * 5 * * * * * * * * * * * * * * * * *
ÄsCl ₃	. 19
Mixed Ionic and Molecular Naming	
Nolecular Ionic Nm	
No "mono" - use pre-fixes (di, fri;) - No PREFIXES - Tran. Mutals: use	
No - use prefixes (di, fri,) - NO PREFIXES - Tran. Mtals: Use	
- ide - NM ends in -	ide)
	>-ate
Circle the molecular compounds, then name all compounds correctly. CaF ₂ CaO	-ite
Calcium Fluoride	
NF ₃	d tooling =
nitrogen trifluoride	and a
NF3 Nitrogen trifluoride SiO2 P2O5	
E. DIATOMIC ELEMENTS: Professor BE I No Cla H	12 O2 F3
L. DIATORIO ELLINEITION TOTAL	

5) diatomic elements.

The Mole & Avogadro's Number
1 mole of ANYTHING (cars, people, atoms, molecules, books, protons) is equal to You definitely need to memorize this.
1 mole is equal to ↑, just like 1 dozen is equal to 12 things.
Moles are usually referring to atoms and compounds (1 mole of Na atoms = 6.022×10^{23} Na atoms!) because atoms and compounds are very, very, very small.
is Avogadro's number. It's equal to 1 mole. (you only need to know it to "6.02"). GET OUT YOUR PERIODIC TABLE.
Video Guide: "How Big is a Mole?" (TED-Ed)
1) Who was the first guy to propose numerical "counting" of particles like atoms and molecules
2) If you have 6.02×10^{23} (that's about $602,000,000,000,000,000,000,000$) molecules of water (H ₂ O)
 ahow much will it weigh in grams?g band since the density of H₂O is 1 g/mL, 18.01 g of H₂O should also have a volume of the much much much much much much much much
KNOW THIS:
1 mole of He atoms = 6.02×10^{23} He atoms. 1 mole of P atoms = 6.02×10^{23} P atoms 1 mole of Cu atoms = 6.02×10^{23} Cu atoms. 1 mole of Na atoms = 6.02×10^{23} atoms of Na. 1 mole of H ₂ molecules = 6.02×10^{23} molecules of H ₂ . 1 mole of CO ₂ molecules = 6.02×10^{23} molecules of CO ₂ . EASY!
Check out the next pattern. Have your PT ready:
1 mole of He atoms = 6.02×10^{23} He atoms = 4.003 g of He 1 mole of P atoms = 6.02×10^{23} P atoms = 30.97 g of P 1 mole of Cu atoms = 6.02×10^{23} Cu atoms = g of Cu 1 mole of Na atoms = 6.02×10^{23} atoms of Na = g of Na 1 mole of H ₂ molecules = 6.02×10^{23} molecules of H ₂ = 2.02 g of H ₂
The first tricky thing: How many H atoms are in each molecule of H ₂ ?
So you can easily find the molar mass of H on the PT. Why did we have to multiply that PT number (for a single H) by 2 in order to get the molar mass of H ₂ ?
mole of CO_2 molecules = 6.02×10^{23} molecules of CO_2 = g of CO_2 . (1 carbon is g/mol. 2 oxygens = $2 \times$ g/mol)

s	, you've GOT to have units!
	The unit for a regular pack of eggs is 12 eggs/dozen. The unit for an average pack of paper is 500 sheets/ream. The unit for a molar mass is grams/mole . (seen usually as g/mol for short.)
Work	xed Example for Calculating the Molar Mass of H₂O:
Work	ked Example for Calculating the Molar Mass of nitrogen trifluoride:
Wor	ked Example for Calculating the Molar Mass of ammonium chloride:
Prac	ctice. Find the molar mass of each compound, using your PT. Must use appropriate units!
,	 How much molar mass does 1 mole of zirconium have? Determine the molar mass of 1 mole of sodium chloride. Find the molar mass of 1 mole of CF₄. What is the molar mass of 1 mole of barium hydroxide?
	Always start with what you know
	5) Worked Example: I have 1.95 × 10 ²⁴ atoms of sulfur. (Sig figs matter!) a. How many moles of sulfur do I have? b. How many grams does my sample weigh?
_	6) Worked Example: Mark has 88.0 grams of solid KF. a. How many moles of KF does Mark have? b. How many atoms of KF does Mark

Volument of from	
You can go from to (and vice-versa) by using the molar, found on the period table. You'll have to do some adding and multiplying for	
compounds.	
Review: What are the units for molar mass?	
Review: How would you calculate the molar mass for K_2O , knowing there are K atom O atom?	ns ar
You can go from to (and vice-versa) by using's Number.	
Review: What is Avogadro's #?	
Regardless of what you do in chemistry, you MUST go through the mole:	
Mixed Practice:	
7) How many molecules of water are in 60.0 grams of it?	
60.0g H20 x 1 mot x 6.02 E23 mdeals	
8) How many grams does 4.77 × 10 ¹⁹ formula units of NaBr weight?	

9)	Which element has a molar mass of 196.97 g/mol?
11)	Which diatomic element has a molar mass of 37.997 g/mol?
12)	6.02 × 10 ²³ atoms of vanadium will have a mass of grams.
13)	7.5593 × 10 ³⁸ atoms of vanadium will have a mass of grams.
1/1) 7.5593 × 10 ³⁸ atoms of vanadium is equal to moles of vanadium.
ידו,	
15) 3.7 moles of H ₂ O will have a mass of grams.
16	32,600 milligrams of carbon will contain C atoms.
1	7) 10.0 moles of phosphorus pentafluoride will have a mass of grams, and will contain molecules of the compound.
	molecules of the compound.
1	8) Students calculated the molar mass of strontium iodide to be 307.13 g/mol. Calculate their % error.

GASES and The Mole

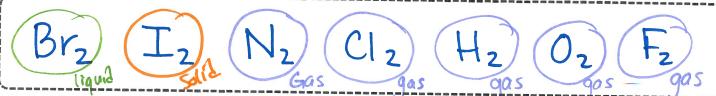
Gases tak	e up	space.	A lo	ot of	space!
-----------	------	--------	------	-------	--------

Recall that the amount of __maHer in something give us its mass, and the amount of space that something takes up is called

Volume has a few different units.

We know that $1 \text{ cm}^3 = \frac{1}{2} \text{ mL} = 1 \text{ cc.}$... and 1000 mL = 1

The common unit for VOLUME in chemistry is the

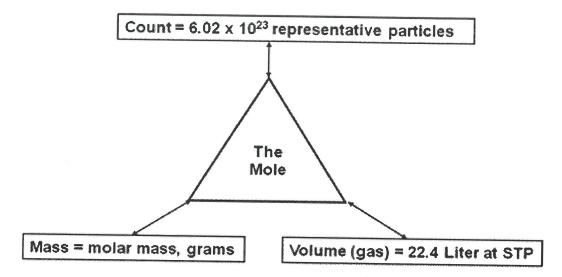

VERY IMPORTANT:

1 mole of a gas is gonna take up 22.4 liters

In fact, 1 mole of any gas will take up 22.4

Review: According to Professor BrINCIHOF ("Brinklehoff"), what are the 7 diatomic elements? Write them out in X2 format, and circle the ones that are gases at standard (normal) temperature and pressure.

Practice with moles and gases: Use the right units! ALWAYS GO THROUGH THE MOLE!


19) How much volume does 8.40 moles of hydrogen (H₂) gas have?

20) How much space (in L) does 113 moles of O2 take up?

16	91 Andrews	liters of s	nace
21) 5.4×10^{16} atoms of helium g			pace.
5.4E16 atomstex	6.02 E23 gloms	-x - 22.4	Mol
22) How much mass does 59.4	= 2.0E-6 L	?	
)
23) 44.8 L of nitrogen gas is	moles of	nitrogen.	
		A	
24) 44.8 L of nitrogen gas is	grams of	nitrogen.	
25) 44.8 L of nitrogen gas is _	molecule	es of nitrogen.	

26) Determine the mass of carbon dioxide gas if the volume of the gas is 96.7 L.

Chapter Seven: The Mole is the Chemist and Physicist's Dozen

The mole = the number of atoms in exaxtly twelve grams of Carbon-12.

1958: 1 mole =
$$6.02 \times 10^{23}$$

2006: 1 mole = $6.02214078 \times 10^{23}$

Avogadro's number = _____

Some mole facts—see if you can find the pattern

- 6.02 × 10²³ atoms in twelve grams of C⁻12.
- 6.02×10^{23} atoms in 12.011 g of carbon (naturally occurring)
- 6.02×10^{23} atoms in 1.008 g of hydrogen
- 6.02 × 10²³ atoms in _____ g of oxygen

Converting between moles and counts of representative particles

1 mole = 6.02×10^{23} representative particles or

$$\frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ rep. part.}} = \frac{6.02 \times 10^{23} \text{ rep. part.}}{1 \text{ mol}}$$

Representative particles:

Elements	
Molecules	
lonic compounds	

3 couples ->

1 mole = 6.02×10^{23} representative particles

- 1. How many formula units of MgS are there in 0.482 mol of MgS?
- 2. How many moles are in 1.204 x 10²⁵ molecules of nitrogen dioxide?
- 3. How many sodium atoms are there in 3.2 moles of sodium? (Ans = 1.9×10^{24} Na atoms)
- 4. How many moles are there in 6.32×10^{24} formula units of Iron(III) sulfide?(Ans = 10.5 mol)

Review of Counting Atoms in Formulas

One mole of NaCl = $\frac{1 \text{ mol of Na, } 1 \text{ mol of Cl}}{2 \text{ mol of Na, } 1 \text{ mol of S}}$

One mole of $Al_2(SO_4)_3 = 2 mol Al, 3 mol S, 12 mol Oty$

You do:

Calculating Molar Mass (formula units, atoms, molecules) Definitions:

Molar Mass = the mass of 6.02x10²³ representative particles of an element, molecule, or ionic compound. Molar Mass may also be called Formula Mass.

6.02 x 10²³ representative particles=1 Mole = molar mass, gram

- 1. Find the molar mass of Sodium.
- 2. Find the molar mass of NaCl.
- 3. Find the molar mass of CaCl₂

4. Find the molar mass of Cu(NO₃)₂

5. Find the molar mass of $Mg(OH)_2$

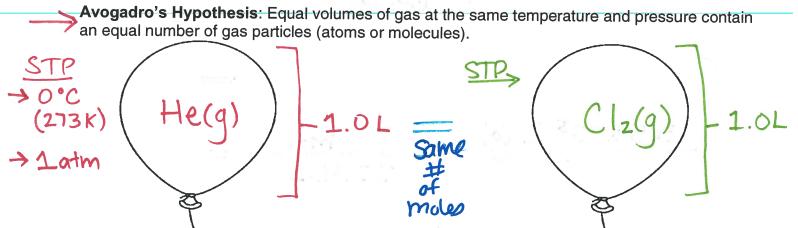
6. Find the molar mass of Ca₃(PO₄)₂

Converting between Moles and Molar Mass

1 mole =
$$6.02 \times 10^{23}$$
 rep. particles = molar mass, g

1. What is the mass of 2.3 moles of $MgBr_2$?(Ans = 420 g)

2. How many moles of potassium iodide are in 29.3 g of KI? (Ans = 0.177 mol)


3. How many grams of SO_3 are present in 2.3 moles of SO_3 ?(Ans = 180 g)

4. How many moles of CaF_2 are equivalent to 450 grams of CaF_2 ? (Ans = 5.8 mol)

5. How many grams of titanium(IV) sulfide, TiS₂, are present in 0.056 moles of titanium(IV) sulfide? (Ans = 6.3 g)

6. How many moles of ammonium sulfate $(NH_4)_2SO_4$ are present in 52.3 grams of ammonium sulfate? (Ans = 0.396 mol)

Molar Volumes

Molar Volume: The volume of one mole of gas at standard temperature and pressure (STP)

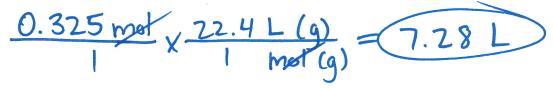
STP = 0°C (273K) & 1.0 atm

1 mole gas = 22.4 L at STP for any gas

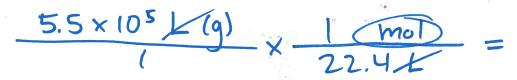
Assumptions about ideal gases

- The gas particles have no volume (points in space)
- The gas particles have no intermolecular attractions
- The gas particles collide elastically like billiard balls.
- Ideal gases never condense no matter how cold it is.

Real Gases Condense!!!!


\$ 1 mol of ANY gas = 22.4 L

Converting between Moles and Molar Gas Volume

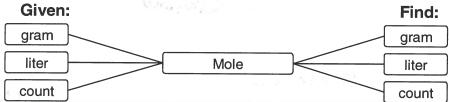

1 mole = 6.02×10^{23} rep. particles = molar mass, g = molar gas volume (22.4L at STP)

1. A neon light contains (neon is a noble gas) 0.51 liters of neon gas at STP. How many moles does the light contain? (Ans = 2.3×10^{-2} mol)

A helium balloon contains 0.325 moles of gas at STP. What is the balloon's volume in liters? (Ans = 7.28 L He)

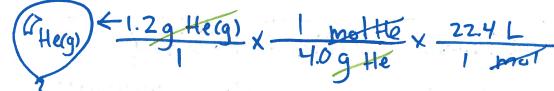
An underground cavern contains 5.5×10^5 liters of natural gas, CH_4 , at STP. How many moles of gas are in the cavern? (Ans = 2.5×10^4 mol)

4. A blimp contains 35,000 liters of hydrogen gas (flammable!) at STP. How many moles of hydrogen does it contain? (Ans = 1.6×10^3 mol)


More Molar Conversions—You can go anywhere!

1 mole = 6.02×10^{23} rep. part = gram formula mass = 22.4 Liters at STP

Chapter Seven Objectives


- Memorize Avogadro's number
- Memorize STP volume of 1 mole of gas (0°C, 1 atm)
- Convert between grams, moles, representative particles and liters using factor label method.
- Calculate molar masses

unit to mole	mole to unit
1 mole 6.02 x 10 ²³ rep. part.	6.02 x 10 ²³ rep. part.
1 mole g. molar mass	g. molar mass 1 mole
1 mole 22.4 L. gas	22.4 L. gas

1. How many atoms of gold are contained in a 505 gram bar of Au?(Ans = 1.54 x 10²⁴ Au atoms)

- 2. Find the number of moles of Cl_2 gas in a 1.46 x 10^4 liter tank at STP.(Ans = 62 mol)
- 3. A balloon contains 1.2 grams of Helium. What is the balloon's volume at STP?

4.) How many molecules of fluorine gas are in an 0.0030 liter ampule at STP?(Ans = 8.2 x 10¹⁹ molec.)

Chapter Eight Skeleton Notes Part 1					
3/7 I. Chemical Equations $3NaN_3(s) \rightarrow 4N_2(g) + 1Na_3N(s)$					
Symbols Use reaction					
- Forward rxn (goes to completion)					
reversible rxn (equilibrium)					
(s), (1), (g) States of matter (solid, gas, liquid)					
(aq) dissolved in H2O (aqueous)					
$\frac{\text{catalyst}}{\text{Speeds up } \alpha \text{ rxn}}$					
heat add (or remove) from nn					
B: Examples of chemical equations					
Synthesis rth $Mg(s) + O_2(g) \rightarrow MgO$ Reactants = $mag $					
	10				
oxygen (qas) magnesium oxid	ve				
Products = $OF_2(g) \rightarrow F_2(g) + O_2(g)$					
CD > C+D Oxygen diffuorite fluorine					
Writing chemical equations from word equations 1. Sodium metal reacts with chlorine gas to form sodium chloride					
2Na(s) +1Cl2(g) -> 2NaCl(s)	\mathcal{O}				
2. Iron metal reacts with oxygen gas to form rust, iron(III)oxide.					
4Fe(s) + 30 ₂ (q) = 2Fe ₂ O ₃ (s)					
3. Solid nitrogen triiodide decomposes to solid iodine and nitrogen gas.					
$2NI_3(s) \longrightarrow 3I_2(s) + 1N_2(g)$					
Catalysts: Speeds up a reaction WITHOUT					
being consumed.	_				
Skeleton equations do not show the amounts of products and reactants.					

- similar to energy

C. Balancing chemical reactions using coefficients

Law of conservation of mass:	"MaHer	cannot	be

created, nor destroyed... only transformed"

Balanced equations use coefficients in front of formulas to show the

balanced # of atoms molecules

A chemical reaction is balanced if there are the same number of each kind of element on both sides of the chemical equation. If there are four oxygens on the reactant side, there will be ____ oxygens on the product side.

Count the atoms of each element of both sides.→ Indicate which equations are balanced.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

1 Carbon | 1 carbon
2 Oxygen | 2 oxygens

Fe(s) + $O_2(g) \rightarrow Fe_2O_3$ (s) 1 Fe | 2 Fe 2 Oxy 3 0xy

 $3NH_{3} + H_{3}PO_{4} \rightarrow (NH_{4})_{3}PO_{4}$ $3N \mid 3 \mid N$ $12H \mid 12H$ $1P \mid 1P$ $4O \mid 4O$

$$C_4H_{10} + 4O_2 \rightarrow 4CO_2 + 5H_2O$$
 $4 C$
 $10 H$
 $10 H$
 $13 O$

 $Ca(CIO_3)_2 \rightarrow CaCl_2(s) + 3O_2(g)$

V balanced!

X balanad.

coefficients apply to the entire compound

Balanael.

X NOT Bal. ~

040

balancing chemical equations

- a. Write the skeleton chemical equation leaving blanks for the coefficients:
- b. Count the number of each element in the reactant and product side
- c. Balance the equation using whole number coefficients (NEVER SUBSCRIPTS)
- d. Track your changes
 - 1. Balance the other compounds to the most complicated compound.
 - 2. Balance the binary compounds (H₂O, CO₂, NO₂)
 - 3. Balance diatomics and elements last
 - 4. If you end up with an odd number that won't balance (3 oxygens on one side, two on the other) double all the coefficients filled in so far.
 - Double check when you're done.

$$\frac{3 \text{ K}_2\text{S} + 2 \text{ FeCl}_3 \rightarrow 1 \text{ Fe}_2\text{S}_3 + 6 \text{ KCl}}{6 \text{ K}}$$

$$\frac{3 \text{ S}}{3 \text{ S}}$$

$$\frac{3 \text{ Fe}_2\text{S}_3 + 6 \text{ KCl}}{6 \text{ K}}$$

$$\frac{3 \text{ S}}{2 \text{ Fe}}$$

$$\frac{3 \text{ S}}{2 \text{ Fe}}$$
For combustion reactions, use the CHO rule (C first, H second, O last)

$$\frac{1}{1}CH_4 + \frac{2}{1}O_2 \rightarrow \frac{1}{1}CO_2 + \frac{2}{1}H_2O$$

$$\frac{2}{1}C_2H_6 + \frac{3}{1}CO_2 \rightarrow \frac{4}{1}CO_2 + \frac{3}{1}H_2O$$

$$C_2H_6O + O_2 \rightarrow CO_2 + H_2O$$

$$\square + O_2 \rightarrow (O_2 + H_2 O_2 + H_2 O_2$$

Chlorine gas was used in chemical warfare during WWI. The Germans used Chlorine gas on the Allied Forces in Ypres, France in 1915. Chlorine reacts with the moisture in lungs to produce hydrochloric acid, HCI.

You try balancing the reaction for chlorine in your lungs:

$$__Cl_2(g) + __H_2O(l) \rightarrow __HCl(l) + __O_2(g)$$

Now try balancing the reaction for phosgene (Cl₂CO) in your lungs. This is another poisonous gas used in warfare.

$$\underline{\hspace{1cm}} \mathsf{CI}_2\mathsf{CO}(g) + \underline{\hspace{1cm}} \mathsf{H}_2\mathsf{O}(\mathit{l}) \to \underline{\hspace{1cm}} \mathsf{HCI}(\mathit{l}) + \underline{\hspace{1cm}} \mathsf{CO}(g) + \underline{\hspace{1cm}} \mathsf{O}_2(g)$$

(

7.

Chem F'17

Chemistry Unit 2

Chemistry Unit 2				
Primary reference: Chemistry: Matter and Change [Glencoe, 2017]				
Topic	Topic Essential Knowledge			
Investigation				
Atomic	Democritus : Greek philosopher who suggested the idea of atoms @ 400 BC.	Ch 4:		
Structure and Periodic Relationships	John Dalton atomic theory of 4 postulates was based on experimentation—early 1800s J.J. Thomson and Millikan discovered the electron and it's charge respectively. Ernest Rutherford's gold foil experiment showed the atom was mostly empty space with a small, dense, positively charge nucleus.	Read pp. 102-105 on early atomic models and atomic theory.		
2.2 SOL 2a,2c,2d, 2e,2i	Atoms are made of protons , neutrons in the nucleus. A cloud of electrons surrounds the nucleus. An atom's atomic number = the number of protons . All atoms of the same element have the same number of protons . A proton has a positive charge and a relative mass of one. The number of electrons equals the number of protons in a neutral atom. An electron has a negative charge and a relative mass of zero. A neutron has no charge and a relative mass of one. Isotopes are atoms of the same element with a different number of neutrons (Example C-12 and C-13). mass number = #protons + # neutrons The atomic masses on the periodic tables are a weighted average of the isotope masses.	Read pp. 115-119 about atomic numbers and mass numbers		
	Dmitri Mendeleev created a Periodic Table based on the elements' masses and physical and chemical properties. Moseley reordered the table slightly based on atomic number. Rows are called periods and columns are called groups or families . Named families are alkali metals , alkaline earth metals , halogens , and noble gases .	Ch 6: Read pp. 174-181 about the periodic table.		
Nomenclature, Formulas, and	Subscripts in a chemical formula represent the relative number of each type of atom. The subscript follows the element symbol. Example: a water molecule. Han has 2	Ch 3: Read p. 85		
Reactions	hydrogen atoms and one oxygen atom. Parentheses are used when a subscript affects a group of atoms.			
3.2 SOL 3a, 3b, 3c	Example: Mg(NO ₃) ₂ has a ratio of one magnesium atom, 2 nitrogen atoms and 6 oxygen atoms in the compound.	Ch 7: Read pp. 206-209 on ions. Electron configurations will be learned later.		
, ,	Molecules form from non-metals and ionic compounds form from a metal cation and a non-metal anion. Metals lose electrons to become cations . Non-metals gain electrons to form anions . For ionic compounds, the charges of the anions and cations must add to zero. In binary ionic compounds, we name the metal first followed by the anion ending with –ide. Roman numerals are used to show the charge/oxidation state of metals other than alkali or alkaline earth metals. In binary molecular compounds, we use prefixes in front of the element names and end with –ide.	Read pp. 210-216 on ionic compounds. Read pp. 221-224 on polyatomic ions and formulas		
	A chemical equation shows the formulas of all the reactants on the left hand side of the arrow, and the formulas for all the products on the right hand side. Chemical reactions follow the Law of Conservation of Mass —matter is neither created nor	pp 149-151 and 158-159		
	destroyed during a chemical reaction. We balance chemical equations using coefficients in front of each substance in the equation so that each side has the same number of atoms of each element.	Ch 9: Read pp. 282-288 on chemical equations		
Molar Relationships 4.2	Molar mass is the sum of all the atomic masses in a compound. The mole can be used to convert between mass, particles and gas volume using unit cancelation. 1 mole = 6.02 x 10 ²³ things = molar mass = 22.4 L(gas at 0°C & 1atm only)	Ch 10: Read pp. 325-340 on molar conversions; Read pp. 341-343 on		
SOL 4a, 4b, 4d	Ionic compounds dissociate in water to form electrolyte solutions (conduct electricity) whereas molecular compounds do not. An example of an ionic compound as it dissociates in water (into ions) is seen here: $MgBr_2(s) + H_2O(I) \rightarrow Mg^{2+}(aq) + 2Br(aq)$	percent composition (by mass). Ch 7: Read pp. 214-216 on electrolytes		
Phases of Matter and Kinetic Molecular Theory 5.2 SOL 5a, 5d	Kinetic Molecular Theory describes the behavior of gases based on a model of an ideal gas. Ideal gases do not exist but help us understand how real gases behave. Real gases exist, have intermolecular forces, particle volume and can change states, whereas ideal gases do not. Avogadro's hypothesis: Equal volumes of gas at the same pressure and temperature will contain the same number of gas particles. 1 mole gas = 22.4 Liters at 0°C and 1 atm.	Ch 12 and Ch 13: Read pp. 400-406 for an introduction to gases; Read p. 452. Gases will be revisited in greater detail; Read pp. 457-459 on real and ideal gases.		

Unit 2 Objectives

Chemistry: Matter and Change (Glencoe, 2017)

- I. Basic Atomic Structure
 - A. Early Atomic Models through Rutherford
 - B. Atomic number, mass number, atomic mass and isotopes
- II. Introduction to the Periodic Table
 - A. Parts of the periodic table
- III. Chemical Names and Formulas
 - A. Differentiating between molecular and ionic compounds
 - B. Ionic charges of Elements
 - C. Names \leftrightarrow Formulas Binary Ionic Compounds
 - D. Names ↔ Formulas Binary Molecular Compounds
 - E. Diatomic Elements (Review)
- IV. Mole Calculations
 - A. Molar Mass
 - 1. Review of counting atoms in formulas
 - 2. Calculating molar mass
 - 3. Converting between moles and molar mass
 - B. Molar Volume of Gases at STP
 - 1. Avogadro's hypothesis
 - 2. Converting between moles and molar volume at STP (1 mole gas = 22.4 L)
 - C. More Molar Conversions
 - 1. Conversions: mass ↔ volume, mass ↔ count, volume ↔ count
- V. Chemical Reactions
 - A. Understanding chemical reaction symbols
 - B. Balancing Chemical Reactions

Objectives (SOL)

- 1. Identify the contributions of Democritus, Dalton, Thomson, Rutherford, and Millikan, to the development of the modern atomic model. (2i)
- 2. Describe the structure of an atom, including the location of protons, electrons and neutrons.(2c).
- 3. Define the charges and relative masses of electrons, protons and neutrons.
- 4. Determine the number of protons, neutrons and electrons in elements and isotopes. (2a)
- 5. Explain how isotopes differ, yet are still the same element. (2a)
- 6. Calculate the atomic mass for an element given the weighted averages of the isotopes.(2b)
- 7. Identify the contributions of Mendeleev and Mosely to the modern periodic table.(2i)
- 8. Identify the following areas on the periodic table: alkali metals, alkaline earth metals, halogens, noble or inert gases, representative elements, transition metals, non-metals, metals, and metalloids.(2d)
- 9. Distinguish between ionic and molecular compounds.(2g, 3a)
- 10. Count the number of atoms present in compound formulas(3c)
- 11. Explain how anions and cations are formed.(2g)
- 12. Predict monatomic ion charges using the periodic table (2g)
- 13. Use the roman numeral Stock System to identify and name transition metal ions.(3a)
- 14. Predict the ionic compound formed from any two monatomic ions.(3c)
- 15. Write the formulas for binary ionic and molecular compounds given their names and visa versa.(3a&3c)
- 16. Name the seven diatomic elements.(3a)
- 17. Explain Avogadro's Hypothesis.(4a)
- 18. Memorize molar volume = 22.4 Liter at 1 atmosphere and 0°C(4a)
- 19. Calculate the molar mass of a substance given the formula.(4a)
- 20. Calculate conversions between moles, molar masses, molar volumes, and particle counts.(4a)
- 21. Master reading and writing chemical equations using chemical formulas and symbols correctly. (3b)
- 22. Explain the Law of Conservation of Mass
- 23. Balance equations (3b)
- 24. Explain a catalyst's role in a chemical reaction. (3f)

Chapter 5 Atomic Structure Skeleton Notes

		12.01	
	What is an atomic number of an element and where do we find it?	atomic #: # of protons in nucleus (A: It identifies the element)	
	What is a <u>mass</u> <u>number</u> ?	mass #: # of p+ and no > courbon-12 (whole # integer) > Carbon-14)	no=(
	What is an <u>isotope</u> ?	A Atoms of same element w/ same # of pt, But diff. # of no	
کے کے # of no	How do you read isotope symbols? Li or Life vs	top#= Mass # bottom#= atomic # (sum p+ & no) (# of p+) (Isotopes 1D)	
	ALi or CLi or Li	$0 = n^{\circ}$ $= e^{-1}$ $= e^{-1}$	
	How many protons, neutrons and electrons are in 35C1? How many protons, neutrons and	protons 17 neutrons 18 electrons 17 · 35Cl · Chlorine-35 · Chlorine-35 · Cl-35 · 37Cl	35
	electrons are in ³⁷ ₁₇ Cl ? How many protons,	· Chlonne-37 · C1-37	
-	neutrons and electrons are in Calcium-42? What is the atomic	p ⁺ 20, n ⁰ 22, e ⁻ 20 42 Ca	
	mass of an element and where do we find it?	Avg mass of all 1 isotopes of an element. (C1-35, C1-37)	
		75% 25%	

Calculating Atomic mass

Elements contain a mix of isotopes. If we are given the percent composition of each isotope, we can calculate the atomic mass using weighted averages.

Analog

gy: Weighted Grades				
Туре	% Weight	x Score	= Contribution	
Tests	50% (0.50)	75 % pts	= 37.5 pts	
Quizzes	25% (0.25)	92 % pts	= 23 pts	
Homework	25% (0.25)	95 % p+3	= 23.75 pts	

Becky

We use mass number x % abundance (composition) to calculate the approximate atomic mass Example: Find the atomic mass of chlorine using the data below. (Ans = 35.4846 amu)

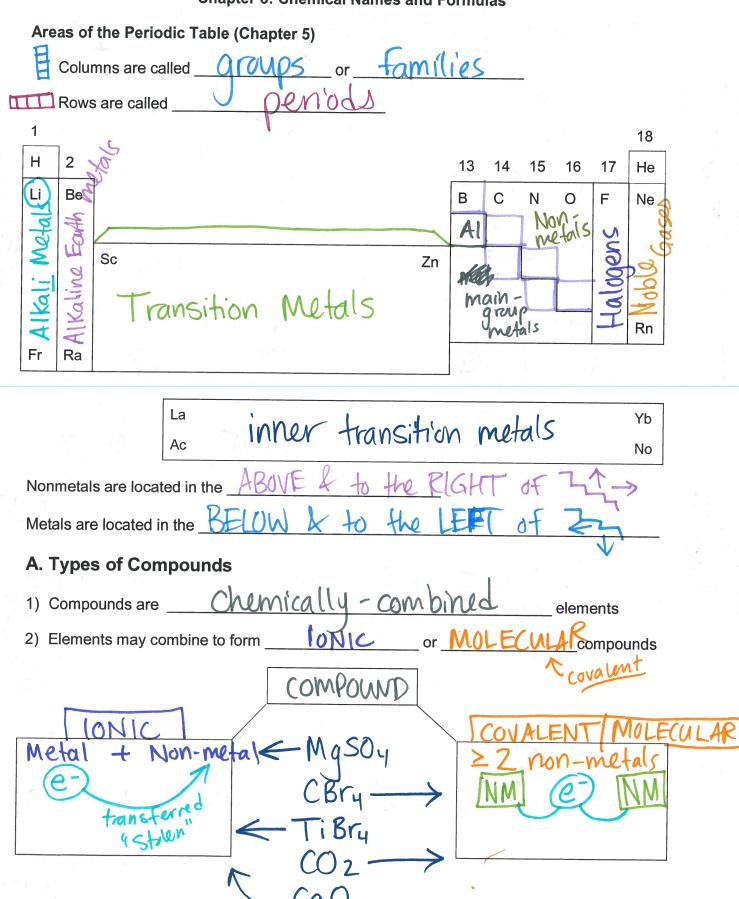
TIPIC: Title cite decime the								
·	Isotope	% Abundance	x mass number	= Contribution	_			
	Cl-35	75.77 0.7577	35		0			
)	Cl-37	24.23 0.2YZ3	37					

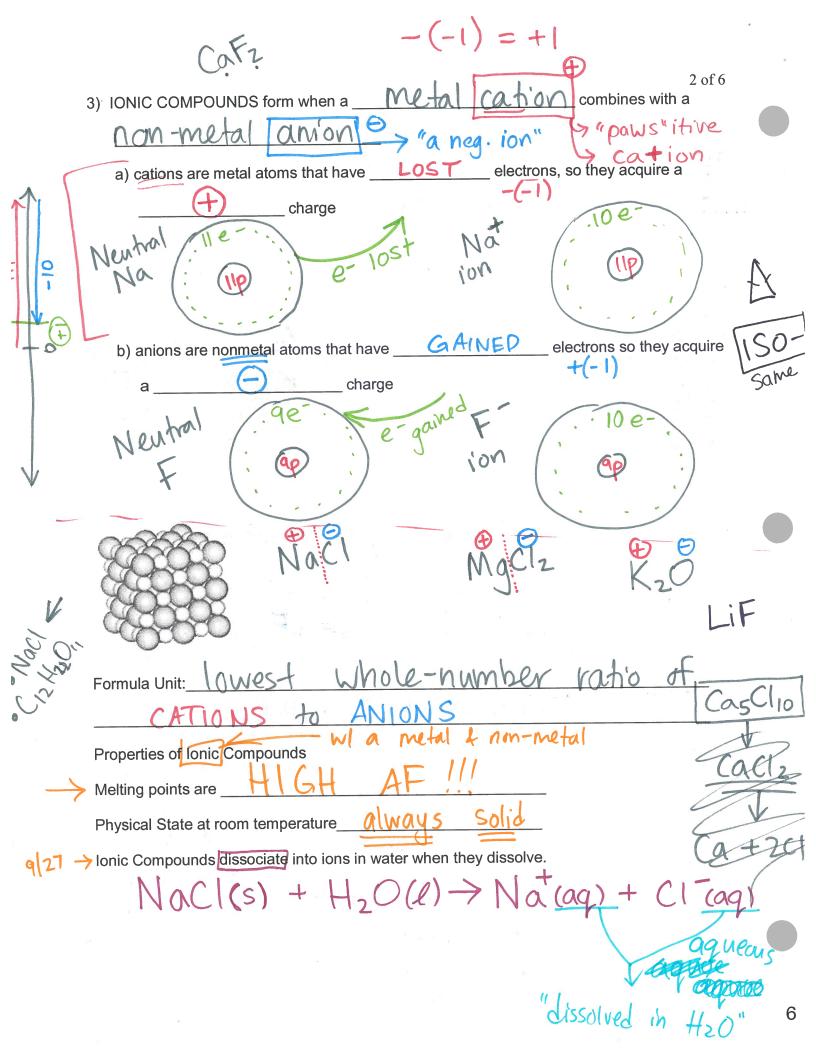
We can calculate a more accurate value by using % abundance and isotope mass in atomic mass units, amu, to calculate the value. (Ans = 35.4528)

to Calculate the value. (Alis – 55:4526)								
Isotope	% Abundance	x amu		= Contribution				
Cl-35	7577 0.7577	34.969	=					
Cl-37	2423 0.2413	36.966	=					

4 SWM= 3 5.4528 amy

Practice: Naturally occurring oxygen contains 99.757 % Oxygen 16 0.038% Oxygen-17 and 0.205% Oxygen-18. Calculate the approximate atomic mass.(Ans = 16.00448 amu)

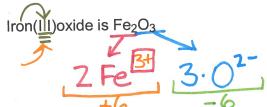

Practice: Use the atomic mass unit data in the following table to calculate oxygen's atomic mass more accurately. (Ans = 15.999 amu) $\rightarrow 16.0$


Isotope	% abundance	amu				
0-16	99.757	15.995				
O-17	0.038	16.999				
0-18	0.205	17.999				

Animation for mass spec and isotopes at:

http://wps.prenhall.com/wps/media/objects/4974/5093961/emedia/ch02/MassSpectrometer/c2s4 item 20/MassSpectrometer.html (and the continuous co

Chapter 6: Chemical Names and Formulas



- 3) The cation (metal) is always written first, and the anion ends in Examples: sodium chloride is NaCl

4) Steps for writing Binary Ionic Formulas from names:

a) Write out element symbol (Ca, Ag, Fe...
with charae!

b) Figure out how many canons (Mt) are needed to

Examples:

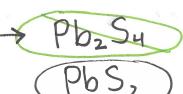
Calcium bromide

Caz+ BK

Magnesium nitride

Mg 2+ 3-

Mg3Nz


II

copper(II)chloride

Cu Cl₂

lead(IV)sulfide

Pb 2-

Lithium oxide

+ $0^{2-} \rightarrow (\text{Li}_20)$

potassium swfde -> Kzs
5) Steps for naming binary ionic compounds from formulas with transition metals
a) Write out cations & name:
b) It it's a tran-metal, "open up par." (
c) Write out anion's name:ide
d) Fill in (_) which metals
OX. State & Charge
K_3N SnF_2 Fe_2O_3
potassium nitride +in(II) fluoride
2 Fe 3.02
3KT 1N 1Sn 2F 60 60
TiO ₂ CaO (III) oxide
K _ V
1Tim, 2.02- Calaium oxide
(44) (FY)
titanium (TV) Oxide D. Binary Molecular Compounds 1) Composed of two
D. Binary Molecular Compounds
1) Composed of two Non - metals
2) Because they are molecules, no are involved.
3) Prefixes are used to show the number of each type of atom present:
1= <u>mond</u> 6= hexa-
2= <u>di</u> - 7= <u>hepta-</u> (02
$3 = \frac{1}{1000}$ $8 = \frac{0000}{1000}$
$4 = \frac{1}{10} = \frac{1000}{10} =$
5 = <u>Dental</u> 10 = <u>decal</u>
4) Exceptions: Do not use mono <u>for the first element</u>
Drop the prefixes ending –a or –o with oxygen compounds. Caybon monoxide
MUZ whan monoxide
Con-

K2S -> potassium sulfize

Examples:

6 of 6

12	()	
11	2	
•		

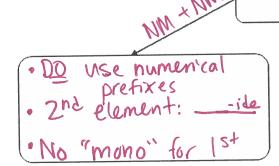
Phosphorus trichloride

Nitrogen dioxide

Dinitrogen pentoxide

Carbon monoxide

tetrafluoride ci- carbon


P205 diphosphovus pentoxide

SiO2 Silicon diaxide

trichloride AsCl3 disenic

Molecular

Mixed Ionic and Molecular Naming

Circle the molecular compounds, then name all compounds correctly. CaF2 calcium fluoride

Calcium oxibe (T)CaO

(M) NF3 nitrogen trifluonde

(M) P2O5

lonic

M SiO2

I) FOR MgBrz magnesium

E. DIATOMIC ELEMENTS: Professor BG 12 N2 C12 H2 O2 F2

 $H_2 + O_2 \rightarrow H_2O$

"Brinklehoff"

The	Mole	&	Avogadro	's Number

1 mole of ANYTHING (cars, people atoms molecules books, protons.) is equal to 6.02×10 ²³ . You definitely need to memorize this.
1 mole is equal to ↑, just like 1 dozen is equal to 12 things.
Moles are usually referring to atoms and compounds (1 mole of Na atoms = 6.022 × 10 ²³ Na atoms!) because atoms and compounds are very, very, very small. 6.02 × (0 ²³ is Avogadro's number. It's equal to 1 mole. (you only need to know it to 6.02")). GET OUT YOUR PERIODIC TABLE.
Video Guide: "How Big is a Mole?" (TED-Ed)
1) Who was the first guy to propose numerical "counting" of particles like atoms and molecules?
2) If you have 6.02×10^{23} (that's about $602,000,000,000,000,000,000,000)$ molecules of water (H ₂ O) ahow much will it weigh in grams? band since the density of H ₂ O is 1 g/mL, 18.01 g of H ₂ O should also have a volume of mL.
KNOW THIS: 1 mole of He atoms = 6.02×10^{23} He atoms. 1 mole of P atoms = 6.02×10^{23} P atoms 1 mole of Cu atoms = 6.02×10^{23} Cu atoms. 1 mole of Na atoms = 6.02×10^{23} atoms of Na. 1 mole of H ₂ molecules = 6.02×10^{23} molecules of H ₂ . 1 mole of CO ₂ molecules = 6.02×10^{23} molecules of CO ₂ . EASY!
Check out the next pattern. Have your PT ready:
1 mole of He atoms = 6.02×10^{23} He atoms = 4.003 g of He 1 mole of P atoms = 6.02×10^{23} P atoms = 30.97 g of P 1 mole of Cu atoms = 6.02×10^{23} Cu atoms = 6.02×10^{23} Cu atoms = 6.02×10^{23} atoms of Na = 6.02×10^{23} atoms of Na = 6.02×10^{23} molecules of H ₂ molecules = 6.02×10^{23} molecules of H ₂ = 6.02×10^{23} molecules o
The first tricky thing: How many H atoms are in each molecule of H ₂ ?
So you can easily find the molar mass of H on the PT. Why did we have to multiply that PT
number (for a <i>single</i> H) by 2 in order to get the <u>molar mass</u> of H ₂ ?
1 mole of CO ₂ molecules = 6.02×10^{23} molecules of CO ₂ = $\frac{44.0}{g}$ g of CO ₂ . (1 carbon is $\frac{12.0}{g}$ g/mol. 2 oxygens = $2 \times \frac{16.00}{g}$ g/mol)

KNOW THIS before you practice: When you look on the PT and see that the molar mass for magnesium (Mg) is, you've GOT to have units! The unit for a regular pack of eggs is 12 eggs/dozen. The unit for an average pack of paper is 500 sheets/ream. The unit for a molar mass is grams/mole. seen usually as g/mol for short.) Worked Example for Calculating the Molar Mass of H ₂ O: Worked Example for Calculating the Molar Mass of nitrogen trifluoride:
(14.0) + 3(19.0) € 71.0 g[mol)
Worked Example for Calculating the Molar Mass of ammonium chloride: NH CI
Practice. Find the molar mass of each compound, using your PT. Must use appropriate units!
 How much molar mass does 1 mole of zirconium have? Determine the molar mass of 1 mole of sodium chloride. Find the molar mass of 1 mole of CF₄. What is the molar mass of 1 mole of barium hydroxide?
Always start with what you know
5) Worked Example: I have 1.95 10 ²⁴ atoms of sulfur. (Sig figs matter!) a. How many moles of sulfur do I have? b. How many grams does my sample weigh? moles 1.95 E 24 Satoms Moles 1.95 Moles
6) Worked Example: Mark has 88.0 grams of solid KF. a. How many moles of KF does Mark have? Moss Moles

You can go from MOSS to MOSS (and vice-versa) by using the molar
, found on the period table. You'll have to do some adding and multiplying for
compounds.
Review: What are the units for molar mass? (Mol) amu or 9
Review: How would you calculate the molar mass for K_2O , knowing there are 2×10^{-1} K atoms and 1×10^{-1} O atom?
You can go fromtoto(and vice-versa) by using's Number.
Review: What is Avogadro's #? 6.02×10^{23}
Regardless of what you do in chemistry, you MUST go through the mole:
MASS (g) By MM MOLE By NA Particles We by NA
Mixed Practice:
7) How many molecules of water are in 60.0 grams of it?
60.0 gHz0 x 1 mol Hz0 x 6.02 E23 (H20 molecules) 18.0 gHz0 mol Hz0 2.01 × 10 ²⁴ H20 molecules 8) How many grams does 4.77 × 10 ¹⁹ formula units of NaBr weight?
8) How many grams does 4.77 × 10 ¹⁹ formula units of NaBr weight?
4.77E19 u. NaBr X 1 mol NaBr X 102.9 g NaBr 6.02E23 u. NaBr X 1 mol NaBr
- Ta NaBr

Conversion Mapping:

T BO	
9) Which element has a molar mass of 196.97 g/mol?	yptun)
12) 6.02 × 10 ²³ atoms of vanadium will have a mass of grams.	
13) 7.5593 × 10 ³⁸ atoms of vanadium will have a mass of grams.	
14) 7.5593 × 10 ³⁸ atoms of vanadium is equal to moles of vanadium	m.
15) 3.7 moles of H ₂ O will have a mass of grams.	
16) 32,600 milligrams of carbon will contain C atoms.	
17) 10.0 moles of phosphorus pentafluoride will have a mass of	grams, and will contain

molecules of the compound.

Students calculated the molar mass of strontium iodide to be 307.13 g/mol. Calculate their % error. $Sr^{2} \stackrel{}{I} \longrightarrow Sr \stackrel{}{I}_{2} \longrightarrow Sr \stackrel{}{I}_{3}$ $= \frac{(34307.13 - 341.42)}{341.42} \times 100 = 10.0\%$

GASES and The Mole

Gases take up space. A lot of space!

Recall that the amount of _______ in something give us its <u>mass</u>, and the amount of <u>space</u> that something takes up is called <u>Volume</u>.

Volume has a few different units.

We know that 1 cm³ =
$$\boxed{m}$$
 = $\boxed{cc.}$... and 1000 mL = 1

15 cc of medicine 15 ml = 15 cm³

VERY IMPORTANT:

1 mole of a gas is gonna take up _____\(\)()\(\frac{1}{5}\) In fact, 1 mole of any gas will take up _____\(\frac{2}{5}\)

10ts of Space

L of space.

Standard temp. (0°C) pressure (1 atm)

KNOW THIS: 1 mole (g) = 22.4 L

Review: According to Professor BrINClHOF ("Brinklehoff"), what are the 7 diatomic elements? Write them out in X_2 format, and circle the ones that are gases at standard (normal) temperature and pressure. $\bigcirc = Solid \bigcirc = liquid \bigcirc = qoS$

Br2 Iz Nz C12 Hz O2 Fz

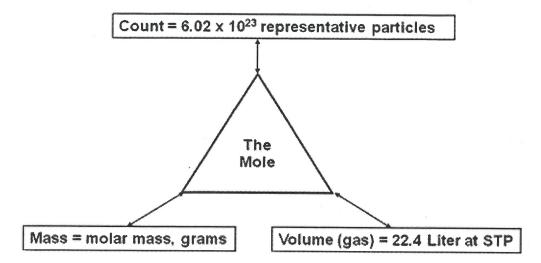
Practice with moles and gases: Use the right units! ALWAYS GO THROUGH THE MOLE!

19) How much volume does 8.40 moles of hydrogen (H₂) gas have?

20) How much space (in L) does 113 moles of O2 take up?

113 mol 02(g) x 22.4 L 02 = 2530 L O2(g)

(21) 5.4 × 10 ¹⁶ atoms of helium gas will take up liters of space.
54 E16 He atoms X mot the x 22.4 L He med the
How much mass does 59.4 L of chlorine gas have?
59.4L Ctz(g) x 1 mot ttz x 70.9 (g Clz)
= 1889 Cl2(q)
23) 44.8 L of nitrogen gas is moles of nitrogen.


24) 44.8 L of nitrogen gas is _____ grams of nitrogen.

25) 44.8 L of nitrogen gas is _____ molecules of nitrogen.

26) Determine the mass of carbon dioxide gas if the volume of the gas is 96.7 L. (STP)

1=96.71-002 × 1 mol (02 × 44.0 @ (02)
1 × 22.4 LCO2 × 1 mol (02)

Chapter Seven: The Mole is the Chemist and Physicist's Dozen

The mole = the number of atoms in exaxtly twelve grams of Carbon-12.

1958: 1 mole = 6.02×10^{23}

2006: 1 mole = $6.02214078 \times 10^{23}$

Avogadro's number =

Some mole facts—see if you can find the pattern

- 6.02 × 10²³ atoms in twelve grams of C⁻12.
- 6.02×10^{23} atoms in 12.011 g of carbon (naturally occurring
- 6.02×10^{23} atoms in 1.008 g of hydrogen
- 6.02 × 10²³ atoms in _____ g of oxygen

Converting between moles and counts of representative particles

1 mole = 6.02×10^{23} representative particles or

$$\frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ rep. part}} = \frac{6.02 \times 10^{23} \text{ rep. part.}}{1 \text{ mol}}$$

Representative particles:

Elements_____

Molecules _____

lonic compounds_____

1 mole = 6.02×10^{23} representative particles

- 1. How many formula units of MgS are there in 0.482 mol of MgS?
- 2. How many moles are in 1.204 x 10²⁵ molecules of nitrogen dioxide?
- 3. How many sodium atoms are there in 3.2 moles of sodium?(Ans = 1.9×10^{24} Na atoms)
- 4. How many moles are there in 6.32×10^{24} formula units of Iron(III) sulfide?(Ans = 10.5 mol)

Review of Counting Atoms in Formulas

One mole of NaCl = $\frac{1}{2}$ $\frac{1}{$

 $\Rightarrow \text{Li}_{3}PO_{4} = 3 \text{ mol Li, Imol P, 4 mol O}$ $Pb(CO_{3})_{2} = 1 \text{ mol Pb, 2 mol C, 6 mol O}$ $\Rightarrow \text{En (Cr. O-)} = 1 \text{ mol Pb, 2 mol C, 6 mol O}$

> lead (III) carbonate

Calculating Molar Mass (formula units, atoms, molecules) Definitions:

Molar Mass = the mass of 6.02x10²³ representative particles of an element, molecule, or ionic compound. Molar Mass may also be called Formula Mass.

6.02 x 10²³ representative particles=1 Mole = molar mass, gram

Examples:

- 1. Find the molar mass of Sodium.
- 2. Find the molar mass of NaCl.
- 3. Find the molar mass of CaCl₂

5. Find the molar mass of Mg(OH)₂

6. Find the molar mass of Ca₃(PO₄)₂

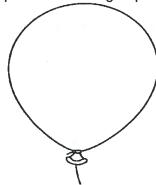
Converting between Moles and Molar Mass

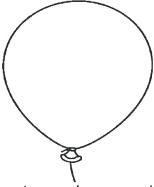
1 mole =
$$6.02 \times 10^{23}$$
 rep. particles = molar mass, g

1. What is the mass of 2.3 moles of $MgBr_2$?(Ans = 420 g)

2. How many moles of potassium iodide are in 29.3 g of KI? (Ans = 0.177 mol)

3. How many grams of SO_3 are present in 2.3 moles of SO_3 ?(Ans = 180 g)


4. How many moles of CaF_2 are equivalent to 450 grams of CaF_2 ?(Ans = 5.8 mol)


5. How many grams of titanium(IV) sulfide, TiS_2 , are present in 0.056 moles of titanium(IV) sulfide? (Ans = 6.3 g)

6. How many moles of ammonium sulfate $(NH_4)_2SO_4$ are present in 52.3 grams of ammonium sulfate?(Ans = 0.396 mol)

Molar Volumes

Avogadro's Hypothesis: Equal volumes of gas at the same temperature and pressure contain an equal number of gas particles (atoms or molecules).

Molar Volume: The volume of one mole of gas at standard temperature and pressure (STP)

STP = 0°C = 273K; 1atm

1 mole gas = 22.4 L at STP for any gas

Assumptions about ideal gases

- The gas particles have no volume (points in space)
- The gas particles have no intermolecular attractions
- The gas particles collide elastically like billiard balls.
- Ideal gases never condense no matter how cold it is.

Real Gases Condense!!!!

Converting between Moles and Molar Gas Volume

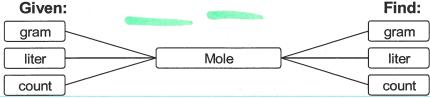
1 mole = 6.02×10^{23} rep. particles = molar mass, g = molar gas volume (22.4L at STP)

1. A neon light contains (neon is a noble gas) 0.51 liters of neon gas at STP. How many moles does the light contain? (Ans = 2.3×10^{-2} mol)

2. A helium balloon contains 0.325 moles of gas at STP. What is the balloon's volume in liters? (Ans = 7.28 L He)

3. An underground cavern contains 5.5×10^5 liters of natural gas, CH₄, at STP. How many moles of gas are in the cavern? (Ans = 2.5×10^4 mol)

4. A blimp contains 35,000 liters of hydrogen gas (flammable!) at STP. How many moles of hydrogen does it contain? (Ans = 1.6×10^3 mol)


More Molar Conversions—You can go anywhere!

1 mole = 6.02 x 10²³ rep. part = gram formula mass = 22.4 Liters at STP

Chapter Seven Objectives

- Memorize Avogadro's number
- Memorize STP volume of 1 mole of gas (0°C, 1 atm)
- Convert between grams, moles, representative particles and liters using factor label method.
- Calculate molar masses

unit to mole	mole to unit
1 mole	6.02 x 10 ²³ rep. part.
6.02 x 10 ²³ rep. part.	1 mole
1 mole	g. molar mass
g. molar mass	1 mole
1 mole	22.4 L. gas
22.4 L. gas	1 mole

- 1. How many atoms of gold are contained in a 505 gram bar of Au?(Ans = 1.54 x 10²⁴ Au atoms)
- 2. Find the number of moles of Cl_2 gas in a 1.46 x 10^4 liter tank at STP.(Ans = 62 mol)
- 3. A balloon contains 1.2 grams of Helium. What is the balloon's volume at STP?(Ans = 7.3 L)

4. How many molecules of fluorine gas are in an 0.0030 liter ampule at STP?(Ans = 8.2×10^{19} molec.)

Chapter Eight Skeleton Notes Part 1

I. Chemical Equations

A+B->C+D

ful rxh	Symbols	Use
fwa !	→	"goes forward" to completion,
	≒ ⇌	reversible rxn (equilibrium)
	(s), (l), (g)	Solid, liquid, Lagas (States)
	(aq)	aqueous (solution; dissolved in 420
*B+C	catalyst	Speeds up a rxn
A	(heat)	od Lheart

A

composition

B: Examples of chemical equations

 $Mg(s) + O_2(g) \rightarrow MgO$

Reactants =

ugen difference

Reactants =

Products =

Products =

Writing chemical equations from word equations

1. Sodium metal reacts with chlorine gas to form sodium chloride

 $Na(s) + Cl_{z}(q) \rightarrow 7$

2. Iron metal reacts with oxygen gas to form rust, iron(III)oxide.

3. Solid nitrogen triiodide decomposes to solid iodine and nitrogen gas.

$$2NI_3(s) = \rightarrow 3I_2(s) + N_2(g)$$

Catalysts:

Skeleton equations do not show the amounts of products and reactants.

C. Balancing chemical reactions using coefficients
Law of conservation of mass: MOSS is nuffler
created nor destroyed only transtamed
Balanced equations use coefficients in front of formulas to show the
of males of each compained de
A chemical reaction is balanced if there are the same number of each kind of element on both sides of the chemical equation. If there are <u>four oxygens</u> on the <u>reactant side</u> , there will be oxygens on the product side.
5N 2 Count the atoms of each element of both sides. → Indicate which equations are balanced
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Fe(s) + $O_2(g) \rightarrow Fe_2O_3(s)$ 1 Fe 2 Fe 2 0 3 0
$3NH_3 + H_3PO_4 \rightarrow (NH_4)_3PO_4$ coefficients apply to the entire compound
12H 12H Bal Ü 40 40
Cambustion $C_4H_{10} + 4O_2 \rightarrow 4CO_2 + 5H_2O$
10 H in MB
8 0 8+5=13 0
$Ca(ClO_3)_2 \rightarrow CaCl_2(s) + 3O_2(g)$
Ca Ca
CI CI W Bal

balancing chemical equations

- a. Write the skeleton chemical equation leaving blanks for the coefficients:
- b. Count the number of each element in the reactant and product side
- c. Balance the equation using whole number coefficients (NEVER SUBSCRIPTS)
- d. Track your changes
 - 1. Balance the other compounds to the most complicated compound.
 - 2. Balance the binary compounds (H₂O, CO₂, NO₂)
 - 3. Balance diatomics and elements last
 - 4. If you end up with an odd number that won't balance (3 oxygens on one side, two on the other) double all the coefficients filled in so far.
 - 5. Double check when you're done.

$$\frac{1}{1} N_2 O_4(g) \xrightarrow{Pt} \frac{1}{1} N_2(g) + \frac{2}{2} O_2(g)$$

$$\frac{3}{1} K_2 S + \frac{2}{1} FeC I_3 \rightarrow 1 Fe_2 S_3 + \frac{6}{1} KC I$$

$$\frac{3}{1} K_2 S + \frac{2}{1} FeC I_3 \rightarrow 1 Fe_2 S_3 + \frac{6}{1} KC I$$

Chlorine gas was used in chemical warfare during WWI. The Germans used Chlorine gas on the Allied Forces in Ypres, France in 1915. Chlorine reacts with the moisture in lungs to produce hydrochloric acid, HCI.

You try balancing the reaction for chlorine in your lungs:

$$\frac{2 \text{Cl}_{2}(g) + 2 \text{H}_{2}O(3) \rightarrow \frac{1}{2} \text{HCl}(3) + \frac{1}{2}O_{2}(g)}{42 \text{Cl}}$$

$$\frac{42 \text{H}}{240} \qquad \frac{42 \text{H}}{242} \qquad \frac{42 \text{H}}{242}$$

Now try balancing the reaction for phosgene (Cl₂CO) in your lungs. This is another poisonous gas used in warfare.

$$\frac{2}{2}\text{Cl}_2\text{CO(g)} + \frac{2}{2}\text{H}_2\text{O(l)} \rightarrow \frac{4}{2}\text{HCI(l)} + \frac{2}{2}\text{CO(g)} + \frac{1}{2}\text{O_2(g)}$$