Chemistry Unit 2

	Primary reference: Chemistry: Matter and Change [Glencoe, 2017]	
Topic Scientific Investigation	Essential Knowledge Understand and use Material Safety Data Sheet (MSDS) warnings including: handling chemicals, lethal dose (LD), disposal and chemical spill <u>clean-up.</u>	Study and Practice Ch 10: Read pp. 341-342 on percent composition
1.2 SOL 1b, 1g	The percent by mass of an element in a compound can be determined: % by mass of element = <u>total mass of element in compound</u> X 100 molar mass of the compound	percent composition
Atomic Structure and Periodic Relationships	Democritus : Greek philosopher who suggested the idea of atoms @ 400 BC. John Dalton atomic theory of 4 postulates was based on experimentation—early 1800s J.J. Thomson and Millikan discovered the electron and it's charge respectively. Ernest Rutherford's gold foil experiment showed the atom was mostly empty space with a small, dense, positively charge nucleus.	Ch 4: Read pp. 102-105 on early atomic models and atomic theory.
2.2 SOL 2a,2c,2d, 2e,2i	Atoms are made of protons, neutrons in the nucleus. A cloud of electrons surrounds the nucleus. An atom's atomic number = the number of protons . All atoms of the same element have the same number of protons . A proton has a positive charge and a relative mass of one. The number of electrons equals the number of protons in a neutral atom. An electron has a negative charge and a relative mass of zero. A neutron has no charge and a relative mass of one. Isotopes are atoms of the same element with a different number of neutrons (Example C-12 and C-13).	Read pp. 115-119 about atomic numbers and mass numbers
	The atomic masses on the periodic tables are a weighted average of the isotope masses. Dmitri Mendeleev created a Periodic Table based on the elements' masses and physical and chemical properties. Moseley reordered the table slightly based on atomic number. Rows are called periods and columns are called groups or families . Named families are alkali metals , alkaline earth metals , halogens , and noble gases .	Ch 6: Read pp. 174-181 about the periodic table.
Nomenclature, Formulas, and Reactions	Subscripts in a chemical formula represent the relative number of each type of atom. The subscript follows the element symbol. Example: a water molecule, H ₂ O , has 2 hydrogen atoms and one oxygen atom. Parentheses are used when a subscript affects a group of atoms.	Ch 3: Read p. 85 Ch 7:
3.2	Example: $Mg(NO_3)_2$ has a ratio of one magnesium atom, 2 nitrogen atoms and 6 oxygen atoms in the compound.	Read pp. 206-209 on ions. Electron configurations will be learned later.
SOL 3a, 3b, 3c	Molecules form from non-metals and ionic compounds form from a metal cation and a non-metal anion. Metals lose electrons to become cations . Non-metals gain electrons to form anions . For ionic compounds, the charges of the anions and cations must add to zero. In binary ionic compounds, we name the metal first followed by the anion ending with –ide. Roman numerals are used to show the charge/oxidation state of metals other than alkali or alkaline earth metals. In binary molecular compounds, we use prefixes in front of the element names and end with –ide.	Read pp. 210-216 on ionic compounds. Read pp. 221-224 on polyatomic ions and formulas
	A chemical equation shows the formulas of all the reactants on the left hand side of the arrow, and the formulas for all the products on the right hand side. Chemical reactions follow the Law of Conservation of Mass —matter is neither created nor destroyed during a chemical reaction. We balance chemical equations using coefficients in front of each substance in the equation so that each side has the same number of atoms of each element.	pp 149-151 and 158-159 Ch 9: Read pp. 282-288 on chemical equations
Molar Relationships 4.2	Molar mass is the sum of all the atomic masses in a compound. The mole can be used to convert between mass, particles and gas volume using unit cancelation. 1 mole = 6.02×10^{23} things = molar mass = $22.4 \text{ L(gas at 0°C \& 1atm only)}$	Ch 10: Read pp. 325-340 on molar conversions; Read pp. 341-343 on percent composition (by
SOL 4a, 4b, 4d	Ionic compounds dissociate in water to form electrolyte solutions (conduct electricity) whereas molecular compounds do not. An example of an ionic compound as it dissociates in water (into ions) is seen here: $MgBr_2(s) + H_2O(I) \rightarrow Mg^{2+}(aq) + 2Br^{-}(aq)$	mass). Ch 7: Read pp. 214-216 on electrolytes
Phases of Matter and Kinetic Molecular Theory 5.2 SOL 5a, 5d	Kinetic Molecular Theory describes the behavior of gases based on a model of an ideal gas. Ideal gases do not exist but help us understand how real gases behave. Real gases exist, have intermolecular forces, particle volume and can change states, whereas ideal gases do not. Avogadro's hypothesis: Equal volumes of gas at the same pressure and temperature will contain the same number of gas particles. I mole gas = 22.4 Liters at 0°C and 1 atm.	Ch 12 and Ch 13: Read pp. 400-406 for an introduction to gases; Read p. 452. <i>Gases will be</i> <i>revisited in greater detail;</i> Read pp. 457-459 on real and ideal gases.

Unit 2 Objectives

Chemistry: Matter and Change (Glencoe, 2017)

- I. Basic Atomic Structure
 - A. Early Atomic Models through Rutherford
 - B. Atomic number, mass number, atomic mass and isotopes
- II. Introduction to the Periodic Table
 - A. Parts of the periodic table
- III. Chemical Names and Formulas
 - A. Differentiating between molecular and ionic compounds
 - B. Ionic charges of Elements
 - C. Names \leftrightarrow Formulas Binary Ionic Compounds
 - D. Names \leftrightarrow Formulas Binary Molecular Compounds
 - E. Diatomic Elements (Review)
- IV. Mole Calculations
 - A. Molar Mass
 - 1. Review of counting atoms in formulas
 - 2. Calculating molar mass
 - 3. Converting between moles and molar mass
 - B. Molar Volume of Gases at STP
 - 1. Avogadro's hypothesis
 - 2. Converting between moles and molar volume at STP (1 mole gas = 22.4 L)
 - C. More Molar Conversions
 - 1. Conversions: mass \leftrightarrow volume, mass \leftrightarrow count, volume \leftrightarrow count
- V. Chemical Reactions
 - A. Understanding chemical reaction symbols
 - B. Balancing Chemical Reactions

Objectives (SOL)

- 1. Identify the contributions of Democritus, Dalton, Thomson, Rutherford, and Millikan, to the development of the modern atomic model. (2i)
- 2. Describe the structure of an atom, including the location of protons, electrons and neutrons.(2c).
- 3. Define the charges and relative masses of electrons, protons and neutrons.
- 4. Determine the number of protons, neutrons and electrons in elements and isotopes. (2a)
- 5. Explain how isotopes differ, yet are still the same element.(2a)
- 6. Calculate the atomic mass for an element given the weighted averages of the isotopes.(2b)
- 7. Identify the contributions of Mendeleev and Mosely to the modern periodic table. (2i)
- 8. Identify the following areas on the periodic table: alkali metals, alkaline earth metals, halogens, noble or inert gases, representative elements, transition metals, non-metals, metals, and metalloids.(2d)
- 9. Distinguish between ionic and molecular compounds.(2g, 3a)
- 10. Count the number of atoms present in compound formulas(3c)
- 11. Explain how anions and cations are formed.(2g)
- 12. Predict monatomic ion charges using the periodic table (2g)
- 13. Use the roman numeral Stock System to identify and name transition metal ions.(3a)
- 14. Predict the ionic compound formed from any two monatomic ions.(3c)
- 15. Write the formulas for binary ionic and molecular compounds given their names and visa versa.(3a&3c)
- 16. Name the seven diatomic elements.(3a)
- 17. Explain Avogadro's Hypothesis.(4a)
- 18. Memorize molar volume = 22.4 Liter at 1 atmosphere and 0°C(4a)
- 19. Calculate the molar mass of a substance given the formula.(4a)
- 20. Calculate conversions between moles, molar masses, molar volumes, and particle counts.(4a)
- 21. Master reading and writing chemical equations using chemical formulas and symbols correctly. (3b)
- 22. Explain the Law of Conservation of Mass
- 23. Balance equations (3b)
- 24. Explain a catalyst's role in a chemical reaction. (3f)

What is an <u>atomic</u> <u>number</u> of an element and where do we find it?	
What is a <u>mass</u> <u>number</u> ?	
What is an <u>isotope</u> ?	
How do you read isotope symbols? ⁶ ₃ Li or ⁶ Li or Li-6	top # = bottom # =
VS	
${}^{7}_{3}$ Li or ⁷ Li or Li-7	
How many protons, neutrons and electrons are in ³⁵ ₁₇ Cl ?	protons, neutrons, electrons
How many protons, neutrons and electrons are in ³⁷ ₁₇ Cl ?	p ⁺ , n ⁰ , e ⁻
How many protons, neutrons and electrons are in Calcium-42?	p ⁺ , n ⁰ , e ⁻
What is the atomic mass of an element and where do we find it?	

Calculating Atomic mass

Elements contain a mix of isotopes. If we are given the percent composition of each isotope, we can calculate the atomic mass using weighted averages.

0			
Туре	% Weight	x Score	= Contribution
Tests	50%	75%	
Quizzes	25%	92%	
Homework	25%	95%	

We use mass number x % abundance (composition) to calculate the approximate atomic mass Example: Find the atomic mass of chlorine using the data below. (Ans = 35.4846 amu)

Isotope	% Abundance	x mass number	= Contribution
Cl-35	75.77	35	
Cl-37	24.23	37	

We can calculate a more accurate value by using % abundance and isotope mass in atomic mass units, amu, to calculate the value. (Ans = 35.4528)

Isotope	% Abundance	x amu	= Contribution
Cl-35	75.77	34.969	
Cl-37	24.23	36.966	

Practice: Naturally occurring oxygen contains 99.757 % Oxygen-16, 0.038% Oxygen-17 and 0.205% Oxygen-18. Calculate the approximate atomic mass.(Ans = 16.00448 amu)

Practice: Use the atomic mass unit data in the following table to calculate oxygen's atomic mass more accurately. (Ans = 15.999 amu)

Isotope	% abundance	amu
0-16	99.757	15.995
0-17	0.038	16.999
0-18	0.205	17.999

Animation for mass spec and isotopes at:

http://wps.prenhall.com/wps/media/objects/4974/5093961/emedia/ch02/MassSpectrometer/c2s4item20/MassSpectrometer.html

Chapter 6: Chemical Names and Formulas

3) IONIC COM	POUNDS form when a	2 of 6 combines with a	
	are metal atoms that have	electrons, so they acquire a	
	charge		
b) anions a	re nonmetal atoms that have	electrons so they acquire	
a	charge		
Properties of lo	nic Compounds		
Melting points a	are		
Physical State a	at room temperature		

Ionic Compounds dissociate into ions in water when they dissolve.

^{3 of 6} B. Common Oxidation States (Charges) of Elements in Ionic Compounds

1. For alkali metals, alkaline earth metals, non-metals and noble gases.

C. Binary Ionic Compounds

1)	Binary compound:			
2)	Ionic compounds are	The positive charges from		
	the cation must be	by the negative charges from the anion.		
3)	The cation (metal) is always written first, and the anion ends in			
	Examples: sodium chloride is NaCl			
	Iron(III)oxide is Fe ₂ O ₃			
4)	Steps for writing Binary Ionic Formulas f	from names:		
	a)			
	b)			
Ex	amples:			
Ca	lcium bromide	copper(II)chloride		
Ma	agnesium nitride	lead(IV)sulfide		
Zir	nc phosphide	Lithium oxide		

Fe₂O₃

5) Steps for naming binary ionic compounds from formulas with transition metals
a)
b)
C)

d) _____

K₃N

 SnF_2

5) Steps for naming binary ionic compounds from formulas with transition metals

ΤiΟ ₂	CaO	
D. Binary Molecular Com	pounds	
1) Composed of two		
2) Because they are molecules	s, no	are involved.
3) Prefixes are used to show th	e number of each type of atom	present:
1 =	6 =	
	7 =	
3 =	8 =	
4 =	9 =	
5 =	10 =	
4) Exceptions: Do not use mon	0	

Drop the prefixes ending –a or –o with oxygen compounds.

Examples:	6 of 6
Phosphorus trichloride	
Nitrogen dioxide	
Dinitrogen pentoxide	
Carbon monoxide	
CF ₄	
P ₂ O ₅	
SiO ₂	
AsCl ₃	
Mixed Ionic and Molecular Naming	
Molecular Ionic	
	*
)
Circle the molecular compounds, then name all compounds correctly. CaF ₂ CaO	
NF ₃ P ₂ O ₅	

 SiO_2

 Fe_2N_3

E. DIATOMIC ELEMENTS: Professor _____

The Mole & Avogadro's Number

1 mole of ANYTHING (cars, people, atoms, molecules, books, protons...) is equal to _____. You definitely need to memorize this.

1 mole is equal to \uparrow , just like 1 dozen is equal to 12 things.

Moles are usually referring to atoms and compounds (1 mole of Na atoms = 6.022×10^{23} Na atoms!) because atoms and compounds are very, very, very small.

______ is Avogadro's number. It's equal to 1 mole. (you only need to know it to "6.02"...). GET OUT YOUR PERIODIC TABLE.

Video Guide: "How Big is a Mole?" (TED-Ed)

- 1) Who was the first guy to propose numerical "counting" of particles like atoms and molecules?
- 2) If you have 6.02×10^{23} (that's about 602,000,000,000,000,000,000) molecules of water (H₂O)...
 - a. ...how much will it weigh in grams? _____g
 - b. ...and since the density of H₂O is 1 g/mL, 18.01 g of H₂O should also have a volume of _____mL.

KNOW THIS:

1 mole of He atoms = 6.02×10^{23} He atoms.

- 1 mole of P atoms = 6.02×10^{23} P atoms
- 1 mole of Cu atoms = 6.02×10^{23} Cu atoms.
- 1 mole of Na atoms = 6.02×10^{23} atoms of Na.
- 1 mole of H₂ molecules = 6.02×10^{23} molecules of H₂.
- 1 mole of CO₂ molecules = 6.02×10^{23} molecules of CO₂. EASY!

Check out the next pattern. Have your PT ready:

1 mole of He atoms = 6.02×10^{23} He atoms = **4.003 g of He**

1 mole of P atoms = 6.02 × 10²³ P atoms = **30.97 g of P**

1 mole of Cu atoms = 6.02×10^{23} Cu atoms = _____ **g of Cu**

1 mole of Na atoms = 6.02×10^{23} atoms of Na = _____ g of Na

1 mole of H₂ molecules = 6.02×10^{23} molecules of H₂ = **2.02 g of H**₂

The first tricky thing: How many H atoms are in each molecule of H₂?

So... you can easily find the **molar mass** of H on the PT. Why did we have to multiply that PT number (for a *single* H) by **2** in order to get the **molar mass** of H₂?

1 mole of CO ₂ molecules =	g of CO ₂ .	
(1 carbon is	g/mol. 2 oxygens = 2×	g/mol)

KNOW THIS before you practice: When you look on the PT and see that the <u>molar mass</u> for magnesium (**Mg**) is _____, you've GOT to have units!

The unit for a regular pack of eggs is 12 eggs/dozen. The unit for an average pack of paper is 500 sheets/ream. The unit for a molar mass is **grams/mole**. (seen usually as **g/mol** for short.)

Worked Example for Calculating the Molar Mass of H_2O :

Worked Example for Calculating the Molar Mass of nitrogen trifluoride:

Worked Example for Calculating the Molar Mass of **ammonium chloride**:

Practice. Find the molar mass of each compound, using your PT. Must use appropriate units!

- 1) How much molar mass does 1 mole of zirconium have?
- 2) Determine the molar mass of 1 mole of sodium chloride.
- 3) Find the molar mass of 1 mole of CF_4 .
- 4) What is the molar mass of 1 mole of barium hydroxide?

Always start with what you know

- 5) Worked Example: I have 1.95×10^{24} atoms of sulfur. (Sig figs matter!)
 - a. How many moles of sulfur do I have?

b. How many grams does my sample weigh?

- 6) Worked Example: Mark has 88.0 grams of solid KF.
 - a. How many moles of KF does Mark have?
- b. How many formula units (particlepairs/set) of KF does Mark have?

Conversion Mapping:

You can go from _______ to ______ (and vice-versa) by using the molar ______, found on the period table. *You'll have to do some adding and multiplying for compounds.*

Review: What are the units for molar mass?

Review: How would you calculate the molar mass for K₂O, knowing there are ____ K atoms and ____ O atom?

You can go from ______ to _____ (and vice-versa) by using

_____'s Number.

Review: What is Avogadro's #?

Regardless of what you do in chemistry, you MUST go through the mole:

Mixed Practice:

7) How many molecules of water are in 60.0 grams of it?

8) How many grams does 4.77 × 10¹⁹ formula units of NaBr weight?

9) Which element has a molar mass of 196.97 g/mol? ______
10) Which element has a molar mass of about 83.8 g/mol? ______

11) Which **diatomic** element has a molar mass of 37.997 g/mol?

12) 6.02 × 10²³ atoms of vanadium will have a mass of _____ grams.

13) 7.5593 × 10³⁸ atoms of vanadium will have a mass of _____ grams.

14) 7.5593 × 10³⁸ atoms of vanadium is equal to _____ moles of vanadium.

15) 3.7 moles of H₂O will have a mass of _____ grams.

16) 32,600 milligrams of carbon will contain _____ C atoms.

17) 10.0 moles of phosphorus pentafluoride will have a mass of ______ grams, and will contain ______ molecules of the compound.

18) Students calculated the molar mass of strontium iodide to be 307.13 g/mol. Calculate their % error.

GASES and The Mole

Gases take up space. A lot of space!

Recall that the amount of ______ in something give us its <u>mass</u>, and the amount of <u>space</u> that something takes up is called _____.

Volume has a few different units.

We know that $1 \text{ cm}^3 = ___= 1 \text{ cc.}$

... and 1000 mL = 1 _____

The common unit for VOLUME in chemistry is the ______.

VERY IMPORTANT:

1 mole of a gas is gonna take up _____. In fact, 1 mole of any gas will take up _____ L of space.

KNOW THIS: 1 mole (g) = 22.4 L

Review: According to Professor BrINCIHOF ("Brinklehoff"), what are the 7 diatomic elements? Write them out in X_2 format, and circle the ones that are gases at standard (normal) temperature and pressure.

Practice with moles and gases: Use the right units! ALWAYS GO THROUGH THE MOLE!

19) How much volume does 8.40 moles of hydrogen (H₂) gas have?

20) How much space (in L) does 113 moles of O2 take up?

21) 5.4 \times 10¹⁶ atoms of helium gas will take up ______ liters of space.

22) How much mass does 59.4 L of chlorine gas have?

23) 44.8 L of nitrogen gas is _____ moles of nitrogen.

24) 44.8 L of nitrogen gas is _____ grams of nitrogen.

25) 44.8 L of nitrogen gas is _____ molecules of nitrogen.

26) Determine the mass of carbon dioxide gas if the volume of the gas is 96.7 L.

Chapter Seven: The Mole is the Chemist and Physicist's Dozen

The mole = the number of atoms in exactly twelve grams of Carbon-12.

1958: 1 mole = 6.02×10^{23} 2006: 1 mole = $6.02214078 \times 10^{23}$

Avogadro's number = _____

Some mole facts—see if you can find the pattern

- 6.02×10^{23} atoms in twelve grams of C⁻12.
- 6.02×10^{23} atoms in 12.011 g of carbon (naturally occurring
- 6.02×10^{23} atoms in 1.008 g of hydrogen
- 6.02 × 10²³ atoms in _____ g of oxygen

Converting between moles and counts of representative particles

1 mole = 6.02×10^{23} representative particles or

 $\frac{1 \text{ mol}}{6.02 \text{ x } 10^{23} \text{ rep. part}} = \frac{6.02 \text{ x } 10^{23} \text{ rep. part.}}{1 \text{ mol}}$

Representative particles:

Elements_____

Molecules _____

Ionic compounds______

1 mole = 6.02×10^{23} representative particles

- 1. How many formula units of MgS are there in 0.482 mol of MgS?
- 2. How many moles are in 1.204 x 10^{25} molecules of nitrogen dioxide?
- 3. How many sodium atoms are there in 3.2 moles of sodium?(Ans = 1.9×10^{24} Na atoms)
- 4. How many moles are there in 6.32 x 10^{24} formula units of Iron(III) sulfide?(Ans = 10.5 mol)

Review of Counting Atoms in Formulas

One mole of NaCl =
One mole of Na ₂ S =
One mole of Al ₂ (SO ₄) ₃ =
You do:
Li ₃ PO ₄ =
Pb(CO ₃) ₂ =
$Fe_2(Cr_2O_7)_3 = $

Calculating Molar Mass (formula units, atoms, molecules) Definitions:

Molar Mass = the mass of 6.02x10²³ representative particles of an element, molecule, or ionic compound. Molar Mass may also be called Formula Mass.

6.02 x 10²³ representative particles=1 Mole = molar mass, gram

Examples:

- 1. Find the molar mass of Sodium.
- 2. Find the molar mass of NaCl.
- 3. Find the molar mass of CaCl₂

4. Find the molar mass of Cu(NO₃)₂

5. Find the molar mass of Mg(OH)₂

6. Find the molar mass of $Ca_3(PO_4)_2$

1 mole = 6.02×10^{23} rep. particles = molar mass, g

1 mol=molar mass, gmolar mass, g1 mol

1. What is the mass of 2.3 moles of $MgBr_2?(Ans = 420 g)$

2. How many moles of potassium iodide are in 29.3 g of KI? (Ans = 0.177 mol)

3. How many grams of SO₃ are present in 2.3 moles of SO₃?(Ans = 180 g)

4. How many moles of CaF_2 are equivalent to 450 grams of CaF_2 ?(Ans = 5.8 mol)

5. How many grams of titanium(IV) sulfide, TiS₂, are present in 0.056 moles of titanium(IV) sulfide? (Ans = 6.3 g)

6. How many moles of ammonium sulfate (NH₄)₂SO₄ are present in 52.3 grams of ammonium sulfate?(Ans = 0.396 mol)

Molar Volumes

Avogadro's Hypothesis: Equal volumes of gas at the same temperature and pressure contain an equal number of gas particles (atoms or molecules).

Molar Volume: The volume of one mole of gas at standard temperature and pressure (STP)

STP =

1 mole gas = 22.4 L at STP for any gas

Assumptions about ideal gases

- The gas particles have no volume (points in space)
- The gas particles have no intermolecular attractions
- The gas particles collide elastically like billiard balls.
- Ideal gases never condense no matter how cold it is. •

Real Gases Condense!!!!

Converting between Moles and Molar Gas Volume

1 mole = 6.02×10^{23} rep. particles = molar mass, g = molar gas volume (22.4L at STP)

 $\frac{1 \text{ mol}}{22.4 \text{ L}} = \frac{22.4 \text{ L}}{1 \text{ mol}}$

1. A neon light contains (neon is a noble gas) 0.51 liters of neon gas at STP. How many moles does the light contain? (Ans = 2.3×10^{-2} mol)

 A helium balloon contains 0.325 moles of gas at STP. What is the balloon's volume in liters? (Ans = 7.28 L He)

3. An underground cavern contains 5.5 x 10^5 liters of natural gas, CH₄, at STP. How many moles of gas are in the cavern? (Ans = 2.5×10^4 mol)

4. A blimp contains 35,000 liters of hydrogen gas (flammable!) at STP. How many moles of hydrogen does it contain? (Ans = 1.6×10^3 mol)

More Molar Conversions—You can go anywhere!

1 mole = 6.02 x 10²³ rep. part = gram formula mass = 22.4 Liters at STP

Chapter Seven ObjectivesMemorize Avogadro's number	unit to mole	mole to unit		
 Memorize STP volume of 1 mole of gas (0°C, 1 atm) 	1 mole 6.02 x 10 ²³ rep. part.	6.02 x 10 ²³ rep. part. 1 mole		
 Convert between grams, moles, representative particles and liters using factor label method. 	1 mole g. molar mass	g. molar mass 1 mole		
Calculate molar masses	1 mole 22.4 L. gas	22.4 L. gas 1 mole		
Given:	Find:			
gram		gram		
liter Mole liter				
count		count		

1. How many atoms of gold are contained in a 505 gram bar of Au?($Ans = 1.54 \times 10^{24}$ Au atoms)

2. Find the number of moles of Cl_2 gas in a 1.46 x 10⁴ liter tank at STP.(Ans = 62 mol)

3. A balloon contains 1.2 grams of Helium. What is the balloon's volume at STP?(Ans = 7.3 L)

4. How many molecules of fluorine gas are in an 0.0030 liter ampule at STP? (Ans = 8.2 x 10¹⁹ molec.)

I. Chemical Equations

Symbols	Use
\rightarrow	
↓	
(s), (l), (g)	
(aq)	
$\xrightarrow{catalyst}$	
heat >	

- B: Examples of chemical equations
 - $Mg(s) + O_2(g) \rightarrow MgO$ Reactants =

Products =

• $OF_2(g) \rightarrow F_2(g) + O_2(g)$ Reactants = Products =

Writing chemical equations from word equations

1. Sodium metal reacts with chlorine gas to form sodium chloride

2. Iron metal reacts with oxygen gas to form rust, iron(III)oxide.

3. Solid nitrogen triiodide decomposes to solid iodine and nitrogen gas.

Catalysts:_____

Skeleton equations do not show the amounts of products and reactants.

C. Balancing chemical reactions using coefficients

Count the atoms of each element of both sides.→ Indicate which equations are balanced.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

 $Fe(s) + O_2(g) \rightarrow Fe_2O_3(s)$

 $3NH_3 + H_3PO_4 \rightarrow (NH_4)_3PO_4$ coefficients apply to the entire compound

 $C_4H_{10} \textbf{+} 4O_2 \rightarrow \ 4CO_2 \textbf{+} 5H_2O$

 $Ca(ClO_3)_2 \rightarrow CaCl_2(s) + 3O_2(g)$

balancing chemical equations

- a. Write the skeleton chemical equation leaving blanks for the coefficients:
- b. Count the number of each element in the reactant and product side
- c. Balance the equation using whole number coefficients (NEVER SUBSCRIPTS)
- d. Track your changes
 - 1. Balance the other compounds to the most complicated compound.
 - 2. Balance the binary compounds (H₂O, CO₂, NO₂)
 - 3. Balance diatomics and elements last
 - 4. If you end up with an odd number that won't balance (3 oxygens on one side, two on the other) double all the coefficients filled in so far.
 - 5. Double check when you're done.

$$_N_2O_4(g) \xrightarrow{P_t} N_2(g) + _O_2(g)$$

$$\underline{\quad} K_2S + \underline{\quad} FeCI_3 \rightarrow \underline{\quad} Fe_2S_3 + \underline{\quad} KCI$$

For combustion reactions, use the CHO rule (C first, H second, O last)

 $\underline{\qquad} CH_4 + \underline{\qquad} O_2 \rightarrow \underline{\qquad} CO_2 + \underline{\qquad} H_2O$

 $\underline{} C_2H_6 + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2O$

 $\underline{} C_2H_6O + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2O$

Chlorine gas was used in chemical warfare during WWI. The Germans used Chlorine gas on the Allied Forces in Ypres, France in 1915. Chlorine reacts with the moisture in lungs to produce hydrochloric acid, HCI.

You try balancing the reaction for chlorine in your lungs:

 $\underline{\qquad} CI_2(g) + \underline{\qquad} H_2O(\ell) \rightarrow \underline{\qquad} HCI(\ell) + \underline{\qquad} O_2(g)$

Now try balancing the reaction for phosgene (Cl_2CO) in your lungs. This is another poisonous gas used in warfare.

 $\underline{\qquad} CI_2CO(g) + \underline{\qquad} H_2O(\ell) \rightarrow \underline{\qquad} HCI(\ell) + \underline{\qquad} CO(g) + \underline{\qquad} O_2(g)$