Chemistry Unit 1
 Primary reference: Chemistry: Matter and Change [Glencoe, 2017]

Objectives for Unit One

Chemistry: Matter and Change (Glencoe, 2017)

Topic Outline

I) Laboratory Safety
II) Introduction to Chemistry
A) Types of matter (definitions)
B) Phases of matter and kinetic theory

1) Kinetic Theory
2) Phases of Matter
3) Converting between ${ }^{\circ} \mathrm{C}$ and K .
C) Physical vs. chemical properties and changes
D) Basics of chemical reactions
III) Scientific Measurements and Math
A) Measurement uncertainty
4) Accuracy and precision
5) \% Error Calculations
B) Scientific Calculation Basics
6) Scientific notation
7) Significant figures
8) Conversion factors and the unit cancellation method(a.k.a. dimensional analysis)
9) Metric System units and the mole
10) Calculating density

Objectives (text problems follow in italics)

1. Identify the chemical symbol for elements $1-38$ plus $\mathrm{Ag}, \mathrm{Cd}, \mathrm{Sn}, \mathrm{I}, \mathrm{Xe}, \mathrm{Cs}, \mathrm{Ba}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Hg}, \mathrm{Pb}, \mathrm{Rn}, \mathrm{Fr}$ from the elements name and visa versa (3a) Flashcards required for these 51 elements!
2. Know the basic laboratory safety rules
3. Differentiate between elements, substances, compounds, and heterogeneous/homogeneous mixtures
4. Memorize the seven diatomic elements (BrINCIHOF)
5. Differentiate between chemical and physical properties and changes
6. Understand the basic differences between a gas, liquid, and solid in terms of kinetic theory
7. Understand the direct relationship between temperature and speed of particles.
8. Understand the inverse relationship between pressure and volume of a gas.
9. Use scientific notation properly including multiplying and dividing using scientific notation
10. Determine the number of significant figures in any number
11. Use significant figures correctly in multiplication, and division problems
12. Memorize and use (SI) metric base units correctly (mass, length, volume, temperature, mole)
13. Memorize and use the conversion equation between ${ }^{\circ} \mathrm{C}$ and K temperature scale.
14. Memorize and convert between metric unit prefixes (kilo, centi, milli)
15. Memorize that 1 mole $=6.02 \times 10^{23}$ particles
16. Explain the difference between precision and accuracy
17. Calculate percent error from word problems
18. Memorize and use the density equation ($D=m / v$) to calculate density, mass, or volume from word problems.
19. Use the unit cancellation method to convert between units and measurements in word problems

Unit 1 Notes

Intro to Chemistry
A. Types of Matter

Matter: \qquad
Mass: \qquad
Substance: \qquad
Examples: \qquad
Element: \qquad
Diatomic elements \qquad
\qquad

Compound: \qquad

Mixtures: \qquad

Homogeneous: \qquad
Examples:

Heterogeneous: \qquad
Examples:

Identify the following as pure element, pure compound, mixtures of elements and/or compounds.

B.Phases of Matter and Kinetic Theory

Solid: \qquad
Liquid: \qquad
Gas:

Which phases can you compress (decrease the volume)? \qquad
Plasmas: \qquad

Substances change phases as temperature increases.
Kinetic Theory: \qquad .
Intermolecular Forces
Why do substances change phases? \qquad

Temperature Scales

Celsius Scale
$0{ }^{\circ} \mathrm{C}$: \qquad
$100{ }^{\circ} \mathrm{C}$ \qquad
2 of 14

Kelvin Scale
0 K : \qquad
273 K: \qquad
Converting between Celsius and Kelvin
Equation: $\mathrm{K}={ }^{\circ} \mathrm{C}+273$

Kelvin	0		
Celsius		0	100

Convert the following

C. Physical vs. Chemical Properties and Changes

Physical property: \qquad

Examples:

Chemical Property: \qquad

Examples:

Physical Changes:
Examples:

Chemical Changes: \qquad
\qquad

Examples:

D. Basics of Chemical Reactions:

Reactants \rightarrow Products
Example: $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Indicators: \qquad

Scientific Measurement and Math

A. Measurement uncertainty for a single measurement.

Accuracy: \qquad
Precision: \qquad

Cylinder A

Cylinder B

Measurement uncertainty for a set of measurements.
Accuracy: \qquad
Precision: \qquad

Example: Three students are determining the density of a sample of silver, \qquad .
The accepted density of silver is $10.50 \mathrm{~g} / \mathrm{cm}^{3}$. Which student is most accurate? Which student is most precise?

	Julie	Robert	Terry
Trial 1	$10.54 \mathrm{~g} / \mathrm{cm} 3$	10.61	10.44
Trial 2	$10.46 \mathrm{~g} / \mathrm{cm} 3$	10.60	10.51
Trial 1	$10.47 \mathrm{~g} / \mathrm{cm} 3$	10.62	10.55
Average/Mean			
Range			

Example: My bathroom scale indicates that I weigh 135 lbs . The calibrated Doctor's scale says 142 lbs. What is the percent error of my scale?

A student uses a ruler to determine a circle has a diameter of 3.8 centimeters. The true diameter is 3.7 centimeters. What is the student's percent error? $(A n s=2.7 \%)$

Calibration:
B. Scientific Calculation Basics
1)Scientific Notation:
only one non-zero digit before decimal point
1.25×10^{2} NOT 12.5×10^{1}
$10^{1}=$
$10^{2}=$ \qquad $10^{3}=$ \qquad
$10^{-1}=$ \qquad
$10^{-2}=$ \qquad
$10^{-3}=$ \qquad
$10^{\circ}=$ \qquad
converting decimal notation to scientific notation

1. Count the number of places you move the decimal point = exponent
2.If the |number|is greater than 1 : \qquad exponent
If the \mid number \mid is less than 1 : \qquad exponent

Examples:

123,000 = \qquad $0.0047=$ \qquad $-420=$ \qquad

Converting scientific notation to decimal notation

1. Move the decimal point to make the number smaller if the exponent is negative
2. Move the decimal point to make the number larger is the exponent is positive

Examples:
$4.5 \times 10^{-3}=$ \qquad $7.4 \times 10^{4}=$ \qquad
multiplying:

Examples:

$$
\begin{aligned}
& \left(2 \times 10^{2}\right)\left(3 \times 10^{3}\right)= \\
& \left(3 \times 10^{-10}\right)\left(5 \times 10^{4}\right)=
\end{aligned}
$$

e)dividing: \qquad
correcting scientific notation:
only one digit in front of the decimal point is allowed.
$15 \times 10^{-6}=$ \qquad
$0.073 \times 10^{4}=$ \qquad

Convert to scientific notation:
\qquad
$235=$
$0.0521=$ \qquad $102,400=$ \qquad
Convert to decimal notation:
$1.2 \times 10^{-4}=$ \qquad $4.2 \times 10^{3}=$ \qquad
Solve:

$$
\left(3 \times 10^{2}\right)\left(3 \times 10^{4}\right)=\square \quad\left(8 \times 10^{4}\right) /\left(2 \times 10^{-2}\right)=
$$ $\left(3 \times 10^{3}\right)\left(4 \times 10^{-5}\right)=$

Using your scientific calculator

Solve $\left(3.0 \times 10^{4}\right) \times\left(7.2 \times 10^{-9}\right)$
TI-30XA enter 3.0EE4 x 7.2 EE (-9)=
TI Graphing Calculator enter 3.0 2ng EE $4 \times 7.22^{\text {no }}$ EE (-9 ENTER

Significant Figures: digits that indicate a measurement's or calculation's precision.

For measurement equipment, always estimate one digit beyond the last division. The estimated digit is the last significant digit. For electronic equipment, the last displayed digit is significant.

Examples: Read measurement equipment using significant digits:

Math with significant digits:

1. Leading zeros never count
2. Trailing zeros only count if there's a decimal point
3. Exact counts and conversion factors have an infinite number of significant digits:

Examples:

23 has 2 significant digits
203 has 3 significant digits
0.0203 has 3 significant digits

2030 has 3 significant digits
2030.0 has 5 significant digits.
2.0×10^{-3} has 2 significant figures
When multiplying or dividing, the answer is rounded to the same number of significant digits as the factor with the least number of significant digits. Use scientific notation if you get stuck.

Example: $3.0 \times 3=9$, but $3.0 \times 3.0=9.0$
$7.0 \times 5.0=35$, but $7 \times 5.0=40(35$ rounds to 40$)$
$5 \times 8=40$, but $5.0 \times 8.0=40$.
$5.0 \times 80.0=400$, correct to 4.0×10^{2}
When adding or subtracting, the final answer should be rounded to the least number of decimal places.

9	9	8	10.27	2200
+2.1				
11.1	+2.6	+2.1	+9.4	+15
11	12	10.6	19.67	2215
		10	19.7	2200

Unit Canceling Method(A.K.A. Dimensional Analysis or Factor-Label)

Unit Canceling Method: \qquad

Some math terms:

$\frac{4 \text { quarts }}{1 \text { gallon }}$	Numerator: Denominator: Coefficents:
	Units:

Parking lot problem: I have 22 quarters, but I want nickels. How many nickels should I get? Given:

Find:
Know:

Side Street Problem: How many teaspoons are in 3.2 cups? Given:
\qquad w/ sig figs) Given:

Find:
Know: 1 inch = 2.54 cm and $1 \mathrm{~m}=100 \mathrm{~cm}$

Metric System Units for Chemistry

	Length	Volume	Mass
Base unit			
Abbrev.			
Common chemistry units			

Metric System Prefixes (using meter as base system)

Number of meters, liters, or grams	prefix	Abbeviation with meter	Written as a power of 10
1000	kilo	km	$1 \mathrm{~km}=\ldots \mathrm{m}$
100	hecto	hm	$1 \mathrm{hm}=\ldots \mathrm{m}$
10	deka	dkm	$1 \mathrm{dkm}=\underline{\mathrm{m}}$
1	base unit (m, L, g.)		
0.1	deci	dm	$1 \mathrm{dm}=\ldots \mathrm{m}$
0.01	centi	cm	$1 \mathrm{~cm}=\ldots \mathrm{m}$
0.001	milli	mm	$1 \mathrm{~mm}=\ldots \mathrm{m}$

Conversions to memorize (using meters as example)
$1000 \mathrm{~m}=1 \mathrm{~km} \quad 10 \mathrm{dm}=1 \mathrm{~m}$
$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{~mm}=1 \mathrm{~m}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$

1 Liter = \qquad mL $1 \mathrm{~kg}=$ \qquad

Metric Conversions with Unit Analysis

Convert 320 mm to \qquad m. Given:

Find:

Convert 3.23 kilograms to grams Given:

Find:

A student ran 5.8 km . How many centimeters did the student run? Given:

Find:

Convert $8.2 \times 10^{8} \mathrm{mg}$ to kg
Given:
Find:

More about units
Volume: one Liter $=1 \mathrm{dm}^{3}$ by definition and $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
so $1 \mathrm{~L}=$ \qquad $\mathrm{mL}=$ \qquad cm^{3}

Mass: 1 kilogram:
\qquad
1 gram

The Mole:

Unit Cancelation and the Mole

We know a dozen equals 12 of anything. We know a trio of singers means three singers. Chemists wanted a similar convenient term to count atoms and molecules. They came up with the term mole. One mole $=602,000,000,000,000,000,000,000$ of things.

1 mole $=6.02 \times 10^{23}$ representative particles or
$\frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { rep. part }}=\frac{6.02 \times 10^{23} \text { rep. part. }}{1 \mathrm{~mol}}$
8.25 dozen eggs = \qquad eggs
8.25 moles of eggs = \qquad eggs

220,000 doughnuts = \qquad dozen doughnuts

220,000 doughnuts = \qquad moles of doughnuts
0.04221 moles of iron atoms $=$ \qquad iron atoms
4.5×10^{26} sodium atoms $=$ \qquad moles of sodium atoms
3.01×10^{-4} moles of water molecules, $\mathrm{H}_{2} \mathrm{O},=$ \qquad water molecules
8×10^{20} potassium atoms $=$ \qquad moles of potassium atoms

Calculating Density

Density is an intrinsic physical property of a substance.
Example: Au, \qquad , density $=19.3 \mathrm{~g} / \mathrm{cm}^{3}$ and Al , \qquad density $=2.7 \mathrm{~g} / \mathrm{cm}^{3}$ Equation: unit =

Example 1: A 4.8 gram sample of grey metal has a volume of $3.9 \mathrm{~cm}^{3}$. What is the metal's density?

Example 2: What is the mass of a pine block measuring $2.0 \times 3.0 \times 6.0 \mathrm{~cm}$ with a density of $0.50 \mathrm{~g} / \mathrm{cm}^{3}$.

Example 3: What is the volume of a gold bar with a mass of 1.81×10^{4} grams. Au's density $=19.3 \mathrm{~g} / \mathrm{cm}^{3}$

Approach 1—use equation.

Approach 2—use unit cancelation and density as a conversion factor.

Density by Displacement.

A ingot of unknown metal with a mass of 241 grams is dropped into a graduated cylinder containing
\qquad mL of water. The water level rises to
\qquad mL . What is the density of the unknown metal?

A machinist needs to identify if an unlabeled box of screws is made of aluminum or stainless steel. The machinist puts 15 screws with a mass of 28 grams into a graduated cylinder that contains 20.0 mL of water. The water level rises to 30.4 mL . Steel has a density of $8.0 \mathrm{~g} / \mathrm{cm}^{3}$ whereas aluminum has a density of $2.7 \mathrm{~g} / \mathrm{cm}^{3}$. What are the screws made of? Justify your answer using a calculation.

More Dimensional Analysis Practice

1) Determine how many milligrams (abbreviation: mg) are in 3.21 lbs of lead. ($1 \mathrm{lb}=\mathrm{about} 2.204 \mathrm{~kg}$)
2) Earth is 1 "astronomical unit" away from the Sun. (1 AU is $150,000,000 \mathrm{~km}$, by the way) Jupiter is 5.2 AU away from the Sun. How many miles is Jupiter from the Sun? (1 mile $=1.609 \mathrm{~km}$)
3) The area of this square garden is 169 cubic feet. What is the area in cubic meters? (1 foot $=12$ inches. 1 inch $=2.54 \mathrm{~cm}$)
4) 1 mL is a volume unit that is equivalent to 1 cubic centimeter ($\left.\mathrm{cm}^{3}\right)$.

This cylinder has a radius of 3.84 cm , and a height of 12.57 cm .
a. Determine the volume of the cylinder in cubic centimeters.

$$
V=\pi r^{2} h
$$

b. Determine the volume of the cylinder in milliliters.
c. Determine the volume of the cylinder in liters. Use scientific notation.
d. Determine the volume of the cylinder in ounces. ($1 \mathrm{oz}=$ about 29.57 mL$)$

