Chemistry Unit 1 Primary reference: *Chemistry: Matter and Change* [Glencoe, 2017]

Торіс	Essential Knowledge	Study Support
Scientific	Use chemicals and equipment safely.	Study your Safety Contract
Investigation		carefully and read pp. 18-19,
Lincougation	Scientific notation is used to express very small or very large measurements in	and page 976.
11	powers of ten. Example: $3.2 \times 10^4 = 32,000$	
		Ch 2:
501 1a 1h 1a	Accuracy is how close a measurement is to the true value. An accurate	Read pp. 40-41 (and pp. 946-
	measurement has very little error.	948) on scientific notation.
1e, 1g	Precision is measure exactness and repeatability.	
	When making measurements, the measurement can only include 1 estimated value.	Read pp. 47-49 on accuracy,
	All digits that are known precisely and the 1 estimated value are called significant	precision, and percent error.
	figures.	
	Percent Error = $100 \times $ accepted value-exper. value / accepted value	Read pp. 50-54 (and pp. 949-
	Circuition at figures are all the divite that can be known presided in a management	955) on sig. ligs.
	Significant figures are all the digits that can be known precisely in a measurement	Pead on 32-38 on the units
	plus a last estimated digit.	and metric system
	In addition and subtraction round the answer to the least number of desimal	and metric system.
	naces as contained by the numbers used in the calculation	
	In multiplication and division round the answer to the least number of significant	Read pp. 44-46 (and pp. 956-
	figures as contained by the numbers used in the calculation	958) on Unit Canceling /
	Common metric unit prefixes are kilo (1000), centi (1/100), milli (1/1000).	Dimensional Analysis / Unit
	The Unit Cancelation Method (Dimensional Analysis) is used to in calculations	Conversion.
	involving unit conversions.	
Atomic	All matter is made from different chemical elements. The Periodic Table of the	Ch 3
Structure and	Elements shows the known elements, arranged by increasing atomic number. The	Pead on 84-90 on elements &
Deriodic	symbol for many of the elements is one capital letter. In two-letter symbols for	compounds
Polationching	elements, the first letter is always an upper case letter, the second one a lower case.	compounds.
Relationships	The smallest particle of an element is an atom . Some common elements are	
2.1	composed of molecules containing two atoms of the same element, also known as	
2.1	the diatomic elements. Example: hydrogen $H_2(g)$ and oxygen $O_2(g)$. BrINCIHOF or	
	go to 7, make a 7, don't forget H.	
SOL 2h, 2i		Read pp. 76-77 on chemical
	A chemical reaction (chemical change) is required to change one substance into	and physical changes.
	another by rearranging its atoms. In a chemical change, a new substance is formed.	
	A physical change occurs when the chemical makeup of a substance stays	
	the same but some physical properties of the substance may change.	
	Density = mass/volume always show units	
	Mixtures are a physical blend of 2 or more substances. A substance can be a	Read pp. 80-82 on mixtures.
	compound or an element. In a heterogeneous mixture, the different parts can	
	be easily seen (like salt and pepper mixed together). In a homogeneous mixture	
	the particles are mixed so well that the separate parts cannot be seen (like salt	
	dissolved in water.)	
Nomenclature,	Atoms of different elements can join together by chemical bonds to form a	Ch 3:
Formulas, and	compound . A compound has different properties from its elements.	Read pp. 84-90 on elements &
Reactions	Chemical formulas show the ratio or number of atoms of each element in a	compounds.
3.1	compound. Example: 2 hydrogen atoms bonded to one oxygen atom make a water	
SOL 3c		
Molar	Atoms and molecules are too small to count. Mole is the unit used to count atoms	Ch 10:
Relationships	and molecules, similar to using dozens to count eggs.	Read pp. 320-324 on the
4.1	$1 \text{ mole} = 6.02 \ 10^{-3} \text{ (atoms or molecules)}$	introduction of the mole.
SOL 4a		
Phases of	Atoms and molecules are in constant motion. For a given substance, colid particles	Ch 3:
Matter and	move slowest liquid particles mover faster, and gas particles move the fastest	Read pp 70-73 on
	Plasma is the 4^{th} phase of matter. Plasmas form when cases is heated to a point	introduction to states of
KINETIC	where electrons dissociate from the nuclei.	matter.
molecular	There is a direct relationship between temperature in Kelvins and speed of the	Ch 2:
Theory	particles. When the temperature increases, particles move faster.	Read pp. 34-35 on
5.1	K = °C + 273	temperature and Kelvin
SOL 5a, 5d		

Objectives for Unit One

Chemistry: Matter and Change (Glencoe, 2017)

Topic Outline

- I) Laboratory Safety
- II) Introduction to Chemistry
 - A) Types of matter (definitions)
 - B) Phases of matter and kinetic theory
 - 1) Kinetic Theory
 - 2) Phases of Matter
 - 3) Converting between °C and K.
 - C) Physical vs. chemical properties and changes
 - D) Basics of chemical reactions
- III) Scientific Measurements and Math
 - A) Measurement uncertainty
 - 1) Accuracy and precision
 - 2) % Error Calculations
 - B) Scientific Calculation Basics
 - 1) Scientific notation
 - 2) Significant figures
 - 3) Conversion factors and the unit cancellation method(a.k.a. dimensional analysis)
 - 4) Metric System units and the mole
 - 5) Calculating density

Objectives (text problems follow in italics)

- 1. Identify the chemical symbol for elements 1-38 plus Ag, Cd, Sn, I, Xe, Cs, Ba, Pt, Au, Hg, Pb, Rn, Fr from the elements name and *visa versa* (3a) Flashcards required for these 51 elements!
- 2. Know the basic laboratory safety rules
- 3. Differentiate between elements, substances, compounds, and heterogeneous/homogeneous mixtures
- 4. Memorize the seven diatomic elements (BrINCIHOF)
- 5. Differentiate between chemical and physical properties and changes
- 6. Understand the basic differences between a gas, liquid, and solid in terms of kinetic theory
- 7. Understand the direct relationship between temperature and speed of particles.
- 8. Understand the inverse relationship between pressure and volume of a gas.
- 9. Use scientific notation properly including multiplying and dividing using scientific notation
- 10. Determine the number of significant figures in any number
- 11. Use significant figures correctly in multiplication, and division problems
- 12. Memorize and use (SI) metric base units correctly (mass, length, volume, temperature, mole)
- 13. Memorize and use the conversion equation between °C and K temperature scale.
- 14. Memorize and convert between metric unit prefixes (kilo, centi, milli)
- 15. Memorize that 1 mole = 6.02×10^{23} particles
- 16. Explain the difference between precision and accuracy
- 17. Calculate percent error from word problems
- 18. Memorize and use the density equation (D=m/v) to calculate density, mass, or volume from word problems.
- 19. Use the unit cancellation method to convert between units and measurements in word problems

Unit 1 Notes
Intro to Chemistry A. Types of Matter
Matter:
Mass:
Substance:
Examples:
Element:
Diatomic elements
Compound:
Mixtures:
Homogeneous:
Examples:
Heterogeneous:
Examples:

Identify the following as pure element, pure compound, mixtures of elements and/or compounds.

	م م	8 9	° 0 ° 0 ° 0 ° 0	0 0 0 0 0
	ୖୖୖୖୄୖୖୖ	କୁ ଜୁତ୍ତ୍ରି		000 0000

B.Phases of Matter and Kinetic Theory

Solid:		
Liquid:		
Gas:		
Solid	Liquid	Gas
Which phases can you com	press (decrease the volume)?_	
Plasmas:		
Substances change phases	as temperature increases.	
Kinetic Theory:		
Intermolecular Forces		
Why do substances change	phases?	
Temperature Scales		
Celsius Scale		
0 °C:		
100 ºC		

Kelvin Scale

0 K:_____ 273 K:_____

Converting between Celsius and Kelvin

Equation: K=°C + 273

Kelvin	0		
Celsius		0	100

Convert the following

-10C=	K
250K =	°C

C. Physical vs. Chemical Properties and Changes

Physical property:_____

Examples:

Chemical Property:_____

Examples:

Physical Changes:_____

Examples:

Chemical Changes:_____

Examples:

D.Basics of Chemical Reactions:

Reactants \rightarrow Products Example: CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O Indicators:

Scientific Measurement and Math

A. Measurement uncertainty for a single measurement.

Accuracy:_____

Precision:_____

Measurement uncertainty for a set of measurements.

Accuracy:_____

Precision:_____

Example: Three students are determining the density of a sample of silver, _____. The accepted density of silver is 10.50 g/cm³. Which student is most accurate? Which student is most precise?

	Julie	Robert	Terry
Trial 1	10.54 g/cm3	10.61	10.44
Trial 2	10.46 g/cm3	10.60	10.51
Trial 1	10.47 g/cm3	10.62	10.55
Average/Mean			
Range			

	experiment al value – true value	400
Percent Error:	true value	x 100

Example: My bathroom scale indicates that I weigh 135 lbs. The calibrated Doctor's scale says 142 lbs. What is the percent error of my scale?

A student uses a ruler to determine a circle has a diameter of 3.8 centimeters. The true diameter is 3.7 centimeters. What is the student's percent error?(Ans = 2.7%)

Calibration: **B.** Scientific Calculation Basics 1)Scientific Notation: only one non-zero digit before decimal point 1.25 x 10² NOT 12.5 x 10¹ 10¹ = _____ $10^2 =$ _____ 10³=_____ 10⁻²= 10⁻¹ = ____ 10⁻³= $10^{0} =$ converting decimal notation to scientific notation 1. Count the number of places you move the decimal point = exponent 2.If the | number | is greater than 1: ______ exponent If the | number | is less than 1: exponent Examples: 123,000 = 0.0047 = -420 = Converting scientific notation to decimal notation 1. Move the decimal point to make the number smaller if the exponent is negative

- 2. Move the decimal point to make the number larger is the exponent is positive

Examples: $4.5 \times 10^{-3} =$ 7.4 × $10^{4} =$

multiplying:		
Examples:		
$(2x10^2)(3x10^3) = $		(3x10 ⁻²)(1.5x10 ⁻¹)=
40 4		
$(3x10^{-10})(5x10^4) = $		_
e)dividina:		
o)ug		
correcting scientific notation only one digit in front of	n: the decimal poir	nt is allowed.
15 x 10 ⁻⁶ =		
0.073 X 10 ⁴ =		
Convert to scientific notation:		
235 =	0.0521=	102,400=
Convert to decimal notation:		
1.2 x 10 ⁻⁴ =	4.2x10 ³ =	
Solve:		
(3x10 ²)(3x10 ⁴)=	(8x10⁴)/	'(2x10 ⁻²)=
(3x10 ³)(4x10 ⁻⁵)=		
Using your scientific calculator		
Solve $(3.0 \times 10^4)x(7.2 \times 10^{-9})$		
TI-30XA enter 3.0EE4 x 7.2	EE (-9)=	
TI Graphing Calculator ente	r 3.0 2 nd EE 4 x 7	7.2 2 nd EE (-) 9 ENTER

Significant Figures: digits that indicate a measurement's or calculation's precision.

For measurement equipment, always estimate one digit beyond the last division. The estimated digit is the last significant digit. For electronic equipment, the last displayed digit is significant.

Examples: Read measurement equipment using significant digits:

Math with significant digits:

- 1. Leading zeros never count
- 2. Trailing zeros only count if there's a decimal point
- 3. Exact counts and conversion factors have an infinite number of significant digits:

Examples:

23 has 2 significant digits

203 has 3 significant digits

0.0203 has 3 significant digits

2030 has 3 significant digits

2030.0 has 5 significant digits.

 2.0×10^{-3} has 2 significant figures

When multiplying or dividing, the answer is rounded to the same number of significant digits as the factor with the least number of significant digits. Use scientific notation if you get stuck.

Example: $3.0 \times 3 = 9$, but $3.0 \times 3.0 = 9.0$

7.0 x 5.0 = 35, but 7 x 5.0 = 40 (35 rounds to 40)

 $5 \times 8 = 40$, but $5.0 \times 8.0 = 40$.

 $5.0 \times 80.0 = 400$, correct to 4.0×10^2

When adding or subtracting, the final answer should be rounded to the least number of decimal places.

9	9	8	10.27	2200
+ 2.1	+ 2.6	+ 2.1	+ 9.4	+ 15
11.1	11.6	10.1	19.67	2215
11	12	10	19.7	2200

Unit Canceling Method(A.K.A. Dimensional Analysis or Factor-Label)

Unit Canc	eling Methoc	l:					
Some mat	h terms:						
	$\frac{4 \text{ quarts}}{1 \text{ gallon}}$	Numerator:		Denomina	tor:	Coefficen	ts:
	-	Units:					
Parking lo Given:	t problem: I ł	nave 22 quarte Fi	rs, but I w nd:	ant nickels.	How many Know:	nickels sho	ould I get?
Side Stree Given:	et Problem: I	How many teas Find:	spoons are	e in 3.2 cup	s? Know:1 cuţ	o=16 Tbs, 1	1 Tbs=3 tsp
Main Stree	et Problem: I	How many feet	are in 0.4	1 meters?(A	Ans = 1.349 ft =	= V	ı∕ sig figs)
Given:		Find:	ł	Know: 1 incl	n = 2.54 cm a	and 1 m =	100 cm

Metric System Units for Chemistry

	Length	Volume	Mass
Base unit			
Abbrev.			
Common chemistry units			

Metric System Prefixes (using meter as base system)

Number of meters, liters, or grams	prefix	Abbeviation with meter	Written as a power of 10)
1000	kilo	km	1 km =	_m
100	hecto	hm	1 hm =	_ m
10	deka	dkm	1 dkm =	_ m
1	base unit (m, L, g.)			
0.1	deci	dm	1 dm =	_ m
0.01	centi	cm	1 cm =	m
0.001	milli	mm	1 mm =	_ m

Conversions to memorize (using meters as example)

1000 m = 1 km 10 dm = 1 m 100 cm = 1 m 1000 mm = 1 m 1 cm = 10 mm

Metric Conversions with Unit Analysis

Convert 320 mm to _____ m. Given: Find:

Convert 3.23 kilograms to grams Given:

Find:

A student ran 5.8 km. How many centimeters did the student run? Given: Find:

Convert	8.2	×	10 ⁸	mg	to	kg

Given:

Find:

More about units

Volume: one Liter = 1dm^3 by definition and $1 \text{ mL} = 1 \text{cm}^3$

so 1 L = _____mL = _____cm³

Mass: 1 kilogram:_____

1 gram_____

The Mole:_____

Unit Cancelation and the Mole

We know a dozen equals 12 of anything. We know a trio of singers means three singers. Chemists wanted a similar convenient term to count atoms and molecules. They came up with the term <u>mole</u>. One mole = 602,000,000,000,000,000,000 of things.

$\frac{1 \text{ mol}}{6.02 \text{ x } 10^{23} \text{ rep. part}} =$	<u>6.02 x 10²³ rep. part.</u> 1 mol
8.25 dozen eggs =	eggs
8.25 moles of eggs =	eggs
220,000 doughnuts =	dozen doughnuts
220,000 doughnuts =	moles of doughnuts
0.04221 moles of iron atoms =	iron atoms
4.5 x 10 ²⁶ sodium atoms =	moles of sodium atoms
3.01 x 10 ⁻⁴ moles of water molecules, H_2O , =	water molecules
8 x 10 ²⁰ potassium atoms =	moles of potassium atoms

1 mole = 6.02×10^{23} representative particles or

Calculating Density

Density is an intrinsic physical property of a substance.

Example: Au, _____, density = 19.3 g/cm³ and Al, _____, density = 2.7 g/cm³

Equation:

unit =

Example 1: A 4.8 gram sample of grey metal has a volume of 3.9 cm³. What is the metal's density?

Example 2: What is the mass of a pine block measuring 2.0 x 3.0 x 6.0 cm with a density of 0.50 g/cm³.

Example 3: What is the volume of a gold bar with a mass of 1.81×10^4 grams. Au's density = 19.3 g/cm³ Approach 1—use equation.

Approach 2—use unit cancelation and density as a conversion factor.

Density by Displacement.

A ingot of unknown metal with a mass of 241 grams is dropped into a graduated cylinder containing _____ mL of water. The water level rises to _____ mL. What is the density of the unknown metal?

A machinist needs to identify if an unlabeled box of screws is made of aluminum or stainless steel. The machinist puts 15 screws with a mass of 28 grams into a graduated cylinder that contains 20.0 mL of water. The water level rises to 30.4 mL. Steel has a density of 8.0 g/cm³ whereas aluminum has a density of 2.7 g/cm³. What are the screws made of? Justify your answer using a calculation.

15

More Dimensional Analysis Practice

1) Determine how many milligrams (abbreviation: mg) are in 3.21 lbs of lead. (1 lb = about 2.204 kg)

- 2) Earth is 1 "<u>a</u>stronomical <u>u</u>nit" away from the Sun. (1 AU is 150,000,000 km, by the way) Jupiter is 5.2 AU away from the Sun. How many miles is Jupiter from the Sun? (1 mile = 1.609 km)
- The area of this square garden is 169 cubic feet. What is the area in cubic meters? (1 foot = 12 inches. 1 inch = 2.54 cm)

- 4) 1 mL is a volume unit that is equivalent to 1 cubic centimeter (cm³). This cylinder has a radius of 3.84 cm, and a height of 12.57 cm.
 - a. Determine the volume of the cylinder in cubic centimeters.
 - b. Determine the volume of the cylinder in milliliters.
 - c. Determine the volume of the cylinder in liters. Use scientific notation.
 - d. Determine the volume of the cylinder in ounces. (1 oz = about 29.57 mL)

