After actively watching both videos on molarity carefully and thinking critically, complete this sheet. This assignment will count as both a HW grade and a Quiz/Classwork grade. It's a good way to boost both grade categories, and your overall grade.

You are responsible for learning molarity and I will help you (if you need) during AEP after you have learned the basics and completed this. One of the things you have to learn as a young adult is how to take more control and responsibility for your learning. Here is a great example of how this works.

Part I: Key molarity concepts.

1) Write the normal equation for molarity in the first box.

In the second box, rearrange the equation to solve for moles.
In the third box, rearrange the equation to solve for volume of solution.

2) What unit of volume is required for the equation?
3) Which of the following words is a general synonym for molarity? Circle the correct answer.
a. Ionic capacity
d. Relative mass
b. Concentration
e. Thermal conductivity
c. Solubility
f. Solvent identity
4) Explain the difference between a solute and a solvent, using one complete sentence.
5) Fully explain what you should do if you have $\mathbf{m L}$ for the volume of solution instead.
6) Fully explain what you should do if you have grams for the amount of solute.
7) Which solution has a higher molarity? Place a checkmark next to the one with the highest molarity.
\qquad Solution X has a volume of $\mathbf{1 . 0} \mathbf{L}$, and has $\mathbf{2 . 0} \mathbf{~ m o l}$ of solute.
\qquad Solution Y has a volume of 2.0 L , and has $\mathbf{2 . 0} \mathbf{~ m o l}$ of solute. Solution Z has a volume of $\mathbf{0 . 5} \mathrm{L}$, and has $\mathbf{1 . 5} \mathbf{~ m o l}$ of solute.

Part II: Calculate the molarity of each problem. Show ALL work. Include units. And read the note below. IMPORTANT: One way to express molarity is using brackets like this: [].
So, the phrase "the molarity of $\mathrm{KNO}_{3}(\mathrm{aq})$ " can be expressed quite simply and quickly as $\left[\mathrm{KNO}_{3}\right]$. You could read [sugar] as "the molarity of sugar." I'm sure you got it!
8) A student dissolves 2.5 mol of NaCl in water, and creates a solution with a volume of 500 mL . Determine $[\mathrm{NaCl}]$ of the solution.
9) A solution has a volume of 1.25 L , and it contains 0.75 mol of glucose. Determine $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]$.
10) There are 50.0 g of sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ dissolved in 750 mL of solution. Calculate $\left[\mathrm{NaNO}_{3}\right]$.

Part III: Calculate the amount of solute in each solution. Read the question carefully; there are two ways to express the amount of solute.
11) Mrs. Johnson's students are using an aqueous glucose solution for AP Biology, where the molarity [$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$] is $\mathbf{0 . 2 5} \mathbf{~ M}$. If the solution has a volume of $\mathbf{1 . 5 0} \mathbf{L} \ldots$
a. ...how many moles of glucose are inside?
b. ...how many grams of glucose are inside? The molar mass of glucose is $180 . \mathrm{g} / \mathrm{mol}$.
12) During the winter, a de-icer solution is used on many car windows to quickly remove the frost without having to scrape it off. These solutions are usually a salt or some other solute dissolved in solvent. A bottle of Ice-B-Gone spray has a volume of $\mathbf{6 8 0} \mathbf{~ m L}$, and the dissolved solute is MgCl_{2}. If $\left[\mathrm{MgCl}_{2}\right]$ is 0.35 M, calculate...
a. ...the number of moles of MgCl_{2} inside the bottle.
b. ...the mass of MgCl_{2} inside the bottle. The molar mass of MgCl_{2} is $95.2 \mathrm{~g} / \mathrm{mol}$.

Part IV: Just one question: Scott needs to prepare a 6.0 M solution of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$. If he uses 481.5 g of NH 4 Cl , what volume (in L) should his solution be? (Hint: Rearrange equation, then convert $\mathrm{g} \rightarrow$ mol using molar mass of $\mathrm{NH}_{4} \mathrm{Cl}$)

